Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA.
J Chem Ecol. 2013 Jul;39(7):1003-6. doi: 10.1007/s10886-013-0313-0. Epub 2013 Jun 27.
Bark beetles encounter a diverse array of constitutive and rapidly induced terpenes when attempting to colonize living conifers. Concentrations of these compounds at entry sites can rapidly reach levels toxic to beetles, their brood, and fungal symbionts. Large numbers of beetles can overwhelm tree defenses via pheromone-mediated mass attacks, but the mechanisms are poorly understood. We show that bacteria associated with mountain pine beetles can metabolize monoterpenes and diterpene acids. The abilities of different symbionts to reduce concentrations of different terpenes appear complementary. Serratia reduced concentrations of all monoterpenes applied to media by 55-75 %, except for α-pinene. Beetle-associated Rahnella reduced (-)- and (+)-α-pinene by 40 % and 45 %, respectively. Serratia and Brevundimonas reduced diterpene abietic acid levels by 100 % at low concentrations. However, high concentrations exhausted this ability, suggesting that opposing rates of bacterial metabolism and plant induction of terpenes are critical. The two major fungal symbionts of mountain pine beetle, Grosmannia clavigera and Ophiostoma montium were highly susceptible to abietic acid. Grosmannia clavigera did not reduce total monoterpene concentrations in lodgepole pine turpentine. We propose the ability of bark beetles to exert landscape-scale impacts may arise partly from micro-scale processes driven by bacterial symbionts.
当试图在活的针叶树上定殖时,树皮甲虫会遇到各种各样的组成型和快速诱导的萜烯。这些化合物在进入部位的浓度可以迅速达到对甲虫、其幼虫和真菌共生体有毒的水平。大量的甲虫可以通过信息素介导的大规模攻击来克服树木的防御,但机制尚不清楚。我们表明,与山松甲虫相关的细菌可以代谢单萜和二萜酸。不同共生体降低不同萜烯浓度的能力似乎是互补的。Serratia 将施加到培养基中的所有单萜的浓度降低了 55-75%,除了α-蒎烯。与甲虫相关的 Rahnella 将(-)-和(+)-α-蒎烯分别降低了 40%和 45%。Serratia 和 Brevundimonas 在低浓度下将二萜树脂酸水平降低了 100%。然而,高浓度耗尽了这种能力,这表明细菌代谢和植物萜烯诱导的相反速率是关键。山松甲虫的两个主要真菌共生体 Grosmannia clavigera 和 Ophiostoma montium 对树脂酸非常敏感。Grosmannia clavigera 并没有降低黑云杉松节油中单萜的总浓度。我们提出,树皮甲虫施加景观尺度影响的能力可能部分源于由细菌共生体驱动的微观尺度过程。