Suppr超能文献

冬眠中的神经元可塑性,以及微管相关蛋白 tau 作为调节神经元网络突触增益的“主开关”的作用。

Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks.

机构信息

Paul Flechsig Institute of Brain Research, Universität Leipzig, Germany.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2013 Sep;305(5):R478-89. doi: 10.1152/ajpregu.00117.2013. Epub 2013 Jul 3.

Abstract

The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".

摘要

本文概述了哺乳动物在冬眠期间大脑结构和学习能力的适应性变化,这是它们在当前或预期的不利环境条件下为最小化能量消耗而采用的一种行为策略。一种有助于调节冬眠期间代谢和产热抑制的细胞机制是酶和蛋白质的可逆磷酸化,这限制了代谢途径中的通量速率。冬眠期间的可逆磷酸化还影响突触膜蛋白,这一过程被认为与突触可塑性有关。这种可逆蛋白磷酸化的机制也会影响微管相关蛋白 tau,从而产生一种在成年人大脑中与 tau 蛋白聚集到配对螺旋丝(PHF)相关的状态,如在阿尔茨海默病中观察到的那样。在这里,我们提出了 tau 磷酸化是一种神经保护机制的概念,以逃避 NMDA 介导的神经元过度兴奋,否则在大脑缓慢逐渐冷却过程中会发生这种过度兴奋。tau 的磷酸化及其随后向亚突触部位的靶向作用可能因此作为一种“主开关”,调节广泛的神经元网络中 NMDA 受体介导的突触增益,从而使动物进入蛰伏状态。然而,如果这种情况持续太久,它最终可能会成为一种病理触发因素,引发一连串的事件导致神经退行性变,如在阿尔茨海默病或其他“tau 病”中那样。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验