Bullmann Torsten, Seeger Gudrun, Stieler Jens, Hanics János, Reimann Katja, Kretzschmann Tanja Petra, Hilbrich Isabel, Holzer Max, Alpár Alán, Arendt Thomas
Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
Frey Initiative Research Unit, RIKEN Quantitative Biology Center, Japan.
Hippocampus. 2016 Mar;26(3):301-18. doi: 10.1002/hipo.22522. Epub 2015 Oct 13.
The microtubule-associated protein tau, in its hyperphosphorylated form, is the major component of paired helical filaments and other aggregates in neurodegenerative disorders commonly referred to as "tauopathies". Recent evidence, however, indicates that mislocalization of hyperphosphorylated tau to subsynaptic sites leads to synaptic impairment and cognitive decline even long before formation of tau aggregates and neurodegeneration occur. A similar, but reversible hyperphosphorylation of tau occurs under physiologically controlled conditions during hibernation. Here, we study the hibernating Golden hamster (Syrian hamster, Mesocricetus auratus). A transient spine reduction was observed in the hippocampus, especially on apical dendrites of hippocampal CA3 pyramidal cells, but not on their basal dendrites. This distribution of structural synaptic regression was correlated to the distribution of phosphorylated tau, which was highly abundant in apical dendrites but hardly detectable in basal dendrites. Surprisingly, hippocampal memory assessed by a labyrinth maze was not affected by hibernation. The present study suggests a role for soluble hyperphosphorylated tau in the process of reversible synaptic regression, which does not lead to memory impairment during hibernation. We hypothesize that tau phosphorylation associated spine regression might mainly affect unstable/dynamic spines while sparing established/stable spines.
微管相关蛋白tau以其高度磷酸化的形式,是神经退行性疾病中通常称为“tau蛋白病”的成对螺旋丝和其他聚集体的主要成分。然而,最近的证据表明,即使在tau聚集体形成和神经退行性变发生之前很久,高度磷酸化的tau错误定位于突触下位点也会导致突触损伤和认知能力下降。在冬眠期间的生理控制条件下,tau会发生类似但可逆的高度磷酸化。在此,我们研究冬眠的金黄地鼠(叙利亚仓鼠,金仓鼠)。在海马体中观察到短暂的树突棘减少,特别是在海马CA3锥体细胞的顶端树突上,但在其基底树突上没有。这种结构性突触退化的分布与磷酸化tau的分布相关,磷酸化tau在顶端树突中高度丰富,但在基底树突中几乎检测不到。令人惊讶的是,通过迷宫评估的海马记忆不受冬眠影响。本研究表明可溶性高度磷酸化的tau在可逆性突触退化过程中起作用,这在冬眠期间不会导致记忆障碍。我们假设tau磷酸化相关的树突棘退化可能主要影响不稳定/动态树突棘,而保留已建立/稳定的树突棘。