Suppr超能文献

RCytoscape:用于探索性网络分析的工具。

RCytoscape: tools for exploratory network analysis.

机构信息

Fred Hutchison Cancer Research Institute, Seattle, WA, USA.

出版信息

BMC Bioinformatics. 2013 Jul 9;14:217. doi: 10.1186/1471-2105-14-217.

Abstract

BACKGROUND

Biomolecular pathways and networks are dynamic and complex, and the perturbations to them which cause disease are often multiple, heterogeneous and contingent. Pathway and network visualizations, rendered on a computer or published on paper, however, tend to be static, lacking in detail, and ill-equipped to explore the variety and quantities of data available today, and the complex causes we seek to understand.

RESULTS

RCytoscape integrates R (an open-ended programming environment rich in statistical power and data-handling facilities) and Cytoscape (powerful network visualization and analysis software). RCytoscape extends Cytoscape's functionality beyond what is possible with the Cytoscape graphical user interface. To illustrate the power of RCytoscape, a portion of the Glioblastoma multiforme (GBM) data set from the Cancer Genome Atlas (TCGA) is examined. Network visualization reveals previously unreported patterns in the data suggesting heterogeneous signaling mechanisms active in GBM Proneural tumors, with possible clinical relevance.

CONCLUSIONS

Progress in bioinformatics and computational biology depends upon exploratory and confirmatory data analysis, upon inference, and upon modeling. These activities will eventually permit the prediction and control of complex biological systems. Network visualizations--molecular maps--created from an open-ended programming environment rich in statistical power and data-handling facilities, such as RCytoscape, will play an essential role in this progression.

摘要

背景

生物分子途径和网络是动态和复杂的,导致疾病的途径和网络的干扰往往是多样的、异质的和偶然的。然而,在计算机上呈现或在纸上发布的途径和网络可视化往往是静态的,缺乏细节,并且不具备探索当今可用的大量数据和我们试图理解的复杂原因的能力。

结果

RCytoscape 将 R(一个功能强大的编程环境,具有丰富的统计功能和数据处理设施)和 Cytoscape(强大的网络可视化和分析软件)集成在一起。RCytoscape 扩展了 Cytoscape 的功能,超越了 Cytoscape 图形用户界面所可能实现的功能。为了说明 RCytoscape 的强大功能,我们检查了来自癌症基因组图谱 (TCGA) 的Glioblastoma multiforme (GBM) 数据集的一部分。网络可视化揭示了数据中以前未报告的模式,表明在 GBM 倾向于神经肿瘤中存在异质的信号传导机制,可能具有临床相关性。

结论

生物信息学和计算生物学的进展取决于探索性和验证性数据分析、推理和建模。这些活动最终将允许对复杂的生物系统进行预测和控制。网络可视化——分子图谱——由一个功能强大的编程环境创建,该环境具有丰富的统计功能和数据处理设施,例如 RCytoscape,将在这一进展中发挥至关重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a4e/3751905/2bf5824d8053/1471-2105-14-217-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验