Suppr超能文献

顺序沉积法制备高性能钙钛矿敏化太阳能电池。

Sequential deposition as a route to high-performance perovskite-sensitized solar cells.

机构信息

Laboratory of Photonics and Interfaces, Department of Chemistry and Chemical Engineering, Swiss Federal Institute of Technology, Station 6, CH-1015 Lausanne, Switzerland.

出版信息

Nature. 2013 Jul 18;499(7458):316-9. doi: 10.1038/nature12340. Epub 2013 Jul 10.

Abstract

Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX2 and CH3NH3X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH3NH3I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today's best thin-film photovoltaic devices.

摘要

在开拓性工作之后,可溶液加工的有机-无机杂化钙钛矿,如 CH3NH3PbX3(X = Cl、Br、I),已作为用于介观太阳能电池的光捕获材料引起了关注。到目前为止,钙钛矿颜料已通过在普通溶剂中混合 PbX2 和 CH3NH3X 一步沉积到介孔金属氧化物膜上。然而,钙钛矿的无控制沉淀会产生大的形态变化,从而导致所得器件中光伏性能的广泛分散,这阻碍了实际应用的前景。在这里,我们描述了一种在多孔金属氧化物膜内形成钙钛矿颜料的顺序沉积方法。首先将 PbI2 从溶液中引入到纳米多孔二氧化钛膜中,然后通过将其暴露于 CH3NH3I 溶液中将其转化为钙钛矿。我们发现,一旦两种成分接触,转化就在纳米多孔主体内发生,这使得对钙钛矿形态的控制比以前使用的方法要好得多。使用这种技术制造固态介观太阳能电池大大提高了其性能的可重复性,并使我们能够实现约 15%的功率转换效率(根据标准 AM1.5G 测试条件在太阳天顶角、太阳光强度和电池温度下测量)。这种两步法应为制造具有前所未有的功率转换效率和与当今最佳薄膜光伏器件相当或更高的稳定性的溶液处理光伏电池提供新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验