Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México.
PLoS One. 2013 Jul 2;8(7):e67010. doi: 10.1371/journal.pone.0067010. Print 2013.
Influenza viruses display a high mutation rate and complex evolutionary patterns. Next-generation sequencing (NGS) has been widely used for qualitative and semi-quantitative assessment of genetic diversity in complex biological samples. The "deep sequencing" approach, enabled by the enormous throughput of current NGS platforms, allows the identification of rare genetic viral variants in targeted genetic regions, but is usually limited to a small number of samples.
We designed a proof-of-principle study to test whether redistributing sequencing throughput from a high depth-small sample number towards a low depth-large sample number approach is feasible and contributes to influenza epidemiological surveillance. Using 454-Roche sequencing, we sequenced at a rather low depth, a 307 bp amplicon of the neuraminidase gene of the Influenza A(H1N1) pandemic (A(H1N1)pdm) virus from cDNA amplicons pooled in 48 barcoded libraries obtained from nasal swab samples of infected patients (n = 299) taken from May to November, 2009 pandemic period in Mexico. This approach revealed that during the transition from the first (May-July) to second wave (September-November) of the pandemic, the initial genetic variants were replaced by the N248D mutation in the NA gene, and enabled the establishment of temporal and geographic associations with genetic diversity and the identification of mutations associated with oseltamivir resistance.
NGS sequencing of a short amplicon from the NA gene at low sequencing depth allowed genetic screening of a large number of samples, providing insights to viral genetic diversity dynamics and the identification of genetic variants associated with oseltamivir resistance. Further research is needed to explain the observed replacement of the genetic variants seen during the second wave. As sequencing throughput rises and library multiplexing and automation improves, we foresee that the approach presented here can be scaled up for global genetic surveillance of influenza and other infectious diseases.
流感病毒具有很高的突变率和复杂的进化模式。下一代测序(NGS)已广泛用于定性和半定量评估复杂生物样本中的遗传多样性。当前 NGS 平台的高通量使得“深度测序”方法能够识别靶向遗传区域中罕见的遗传病毒变体,但通常仅限于少数样本。
我们设计了一项原理验证研究,以测试从高深度-小样本数量向低深度-大样本数量分配测序通量是否可行,并有助于流感流行病学监测。使用 454-Roche 测序,我们对来自感染患者的鼻拭子样本(n = 299)中获得的 48 个条形码文库的 cDNA 扩增子进行了相对低深度的测序,测序长度为 307bp 的流感 A(H1N1)大流行(A(H1N1)pdm)病毒神经氨酸酶基因。这种方法表明,在大流行的第一波(5 月至 7 月)向第二波(9 月至 11 月)过渡期间,NA 基因中的初始遗传变体被 N248D 突变所取代,并确定了与遗传多样性的时间和地理关联,以及鉴定了与奥司他韦耐药相关的突变。
在低测序深度下对 NA 基因的短扩增子进行 NGS 测序,可对大量样本进行遗传筛选,深入了解病毒遗传多样性动态,并鉴定与奥司他韦耐药相关的遗传变体。需要进一步的研究来解释在第二波观察到的遗传变体的替代。随着测序通量的增加以及文库的多重化和自动化的提高,我们预计这里提出的方法可以扩展用于流感和其他传染病的全球遗传监测。