Suppr超能文献

深度测序:成为临床病毒学中的关键工具。

Deep sequencing: becoming a critical tool in clinical virology.

作者信息

Quiñones-Mateu Miguel E, Avila Santiago, Reyes-Teran Gustavo, Martinez Miguel A

机构信息

University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.

Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico.

出版信息

J Clin Virol. 2014 Sep;61(1):9-19. doi: 10.1016/j.jcv.2014.06.013. Epub 2014 Jun 24.

Abstract

Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.

摘要

近40年来,群体(桑格)测序一直是基础和临床DNA测序的标准方法;然而,新一代(深度)测序方法正在彻底改变基因组学领域,临床病毒学也不例外。深度测序效率极高,能在相对较短的时间内以低成本产生大量信息。高通量测序技术为病毒学的多个领域做出了重大贡献,包括病毒发现和宏基因组学(病毒组)、分子流行病学、发病机制,以及病毒如何逃避宿主免疫系统和抗病毒压力的研究。此外,基于深度测序的新的、更经济实惠的检测方法目前正在临床实验室中得到应用。在此,我们综述了当前深度测序平台在病毒学中的应用,重点关注三种研究最多的病毒:人类免疫缺陷病毒(HIV)、丙型肝炎病毒(HCV)和流感病毒。

相似文献

1
Deep sequencing: becoming a critical tool in clinical virology.
J Clin Virol. 2014 Sep;61(1):9-19. doi: 10.1016/j.jcv.2014.06.013. Epub 2014 Jun 24.
2
Next-generation sequencing technologies in diagnostic virology.
J Clin Virol. 2013 Oct;58(2):346-50. doi: 10.1016/j.jcv.2013.03.003. Epub 2013 Mar 21.
3
Loeffler 4.0: Diagnostic Metagenomics.
Adv Virus Res. 2017;99:17-37. doi: 10.1016/bs.aivir.2017.08.001. Epub 2017 Sep 21.
4
Next-generation sequencing technology in clinical virology.
Clin Microbiol Infect. 2013 Jan;19(1):15-22. doi: 10.1111/1469-0691.12056.
5
Applications of next-generation sequencing technologies to diagnostic virology.
Int J Mol Sci. 2011;12(11):7861-84. doi: 10.3390/ijms12117861. Epub 2011 Nov 14.
6
Virome genomics: a tool for defining the human virome.
Curr Opin Microbiol. 2013 Aug;16(4):479-84. doi: 10.1016/j.mib.2013.04.006. Epub 2013 May 23.
7
Exploring the potential of next-generation sequencing in detection of respiratory viruses.
J Clin Microbiol. 2014 Oct;52(10):3722-30. doi: 10.1128/JCM.01641-14. Epub 2014 Aug 6.
8
Characterization of Viral Populations by Using Circular Sequencing.
J Virol. 2016 Sep 29;90(20):8950-3. doi: 10.1128/JVI.00804-14. Print 2016 Oct 15.
10
Application of next-generation sequencing technologies in virology.
J Gen Virol. 2012 Sep;93(Pt 9):1853-1868. doi: 10.1099/vir.0.043182-0. Epub 2012 May 30.

引用本文的文献

1
Direct comparison of clear DX Nanopore and Illumina sequencing of SARS-CoV-2.
Microbiol Spectr. 2025 Sep 2;13(9):e0042725. doi: 10.1128/spectrum.00427-25. Epub 2025 Aug 12.
5
6
Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome.
Microorganisms. 2022 Nov 24;10(12):2327. doi: 10.3390/microorganisms10122327.
9
Low-frequency HIV-1 drug resistance mutations in antiretroviral naïve individuals in Botswana.
Medicine (Baltimore). 2022 Jul 15;101(28):e29577. doi: 10.1097/MD.0000000000029577.

本文引用的文献

1
Isolation and molecular characterization of a novel picornavirus from baitfish in the USA.
PLoS One. 2014 Feb 21;9(2):e87593. doi: 10.1371/journal.pone.0087593. eCollection 2014.
2
Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use?
Curr Infect Dis Rep. 2014 Apr;16(4):401. doi: 10.1007/s11908-014-0401-5.
4
Deep sequencing approach for genetic stability evaluation of influenza A viruses.
J Virol Methods. 2014 Apr;199:68-75. doi: 10.1016/j.jviromet.2013.12.018. Epub 2014 Jan 7.
5
Influenza H7N9 and H9N2 viruses: coexistence in poultry linked to human H7N9 infection and genome characteristics.
J Virol. 2014 Mar;88(6):3423-31. doi: 10.1128/JVI.02059-13. Epub 2014 Jan 8.
7
Inference with viral quasispecies diversity indices: clonal and NGS approaches.
Bioinformatics. 2014 Apr 15;30(8):1104-1111. doi: 10.1093/bioinformatics/btt768. Epub 2014 Jan 2.
8
Pyrosequencing reveals an oseltamivir-resistant marker in the quasispecies of avian influenza A (H7N9) virus.
J Microbiol Immunol Infect. 2015 Aug;48(4):465-9. doi: 10.1016/j.jmii.2013.09.010. Epub 2013 Dec 30.
9
Developing high-throughput HIV incidence assay with pyrosequencing platform.
J Virol. 2014 Mar;88(5):2977-90. doi: 10.1128/JVI.03128-13. Epub 2013 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验