Suppr超能文献

三种用于宏基因组测序和血液病原体鉴定的下一代测序平台的比较。

Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood.

机构信息

Naval Medical Research Center, NMRC-Frederick, 8400 Research Plaza, Fort Detrick, Frederick, MD 21702, USA.

出版信息

BMC Genomics. 2014 Feb 4;15:96. doi: 10.1186/1471-2164-15-96.

Abstract

BACKGROUND

The introduction of benchtop sequencers has made adoption of whole genome sequencing possible for a broader community of researchers than ever before. Concurrently, metagenomic sequencing (MGS) is rapidly emerging as a tool for interrogating complex samples that defy conventional analyses. In addition, next-generation sequencers are increasingly being used in clinical or related settings, for instance to track outbreaks. However, information regarding the analytical sensitivity or limit of detection (LoD) of benchtop sequencers is currently lacking. Furthermore, the specificity of sequence information at or near the LoD is unknown.

RESULTS

In the present study, we assess the ability of three next-generation sequencing platforms to identify a pathogen (viral or bacterial) present in low titers in a clinically relevant sample (blood). Our results indicate that the Roche-454 Titanium platform is capable of detecting Dengue virus at titers as low as 1X102.5 pfu/mL, corresponding to an estimated 5.4X104 genome copies/ml maximum. The increased throughput of the benchtop sequencers, the Ion Torrent PGM and Illumina MiSeq platforms, enabled detection of viral genomes at concentrations as low as 1X104 genome copies/mL. Platform-specific biases were evident in sequence read distributions as well as viral genome coverage. For bacterial samples, only the MiSeq platform was able to provide sequencing reads that could be unambiguously classified as originating from Bacillus anthracis.

CONCLUSION

The analytical sensitivity of all three platforms approaches that of standard qPCR assays. Although all platforms were able to detect pathogens at the levels tested, there were several noteworthy differences. The Roche-454 Titanium platform produced consistently longer reads, even when compared with the latest chemistry updates for the PGM platform. The MiSeq platform produced consistently greater depth and breadth of coverage, while the Ion Torrent was unequaled for speed of sequencing. None of the platforms were able to verify a single nucleotide polymorphism responsible for antiviral resistance in an Influenza A strain isolated from the 2009 H1N1 pandemic. Overall, the benchtop platforms perform well for identification of pathogens from a representative clinical sample. However, unlike identification, characterization of pathogens is likely to require higher titers, multiple libraries and/or multiple sequencing runs.

摘要

背景

台式测序仪的出现使比以往任何时候都更广泛的研究人员群体能够采用全基因组测序。同时,宏基因组测序(MGS)正在迅速成为一种工具,用于检测复杂的样本,这些样本无法进行常规分析。此外,下一代测序仪越来越多地用于临床或相关环境中,例如跟踪疫情爆发。然而,目前缺乏有关台式测序仪分析灵敏度或检测限(LoD)的信息。此外,接近 LoD 时序列信息的特异性尚不清楚。

结果

在本研究中,我们评估了三种下一代测序平台识别临床相关样本(血液)中低滴度病原体(病毒或细菌)的能力。我们的结果表明,罗氏 454 钛平台能够检测到低至 1X102.5 pfu/mL 的登革热病毒滴度,相当于估计的 5.4X104 基因组拷贝/ml 最大值。台式测序仪的高通量,即 Ion Torrent PGM 和 Illumina MiSeq 平台,能够检测到低至 1X104 基因组拷贝/mL 的病毒基因组。在序列读取分布和病毒基因组覆盖方面,存在平台特异性的偏差。对于细菌样本,只有 MiSeq 平台能够提供可明确归类为炭疽芽孢杆菌来源的测序读取。

结论

所有三个平台的分析灵敏度均接近标准 qPCR 检测。尽管所有平台都能够在测试水平上检测到病原体,但存在一些值得注意的差异。罗氏 454 钛平台即使与 PGM 平台的最新化学更新相比,也能产生一致更长的读取。MiSeq 平台产生了一致更大的深度和广度的覆盖,而 Ion Torrent 则在测序速度方面无与伦比。没有一个平台能够验证从 2009 年 H1N1 大流行中分离的流感 A 株中抗病毒耐药性的单一核苷酸多态性。总体而言,台式平台在从代表性临床样本中识别病原体方面表现良好。然而,与鉴定不同,病原体的特征分析可能需要更高的滴度、多个文库和/或多个测序运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a323/3922542/e73f6c6f40f4/1471-2164-15-96-1.jpg

相似文献

2
Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing.
BMC Genomics. 2015 Feb 14;16(1):79. doi: 10.1186/s12864-015-1284-z.
3
Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses.
J Virol Methods. 2020 Jun;280:113865. doi: 10.1016/j.jviromet.2020.113865. Epub 2020 Apr 14.
6
[Comparison of different massive parallel sequencing platforms for mutation profiling in formalin-fixed and paraffin-embedded samples].
Zhonghua Bing Li Xue Za Zhi. 2018 Aug 8;47(8):591-596. doi: 10.3760/cma.j.issn.0529-5807.2018.08.005.
7
Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers.
PLoS One. 2013 Jul 4;8(7):e67744. doi: 10.1371/journal.pone.0067744. Print 2013.
8
Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling.
Appl Environ Microbiol. 2014 Dec;80(24):7583-91. doi: 10.1128/AEM.02206-14. Epub 2014 Sep 26.
9
Pollux: platform independent error correction of single and mixed genomes.
BMC Bioinformatics. 2015 Jan 16;16(1):10. doi: 10.1186/s12859-014-0435-6.
10
MiSeq: A Next Generation Sequencing Platform for Genomic Analysis.
Methods Mol Biol. 2018;1706:223-232. doi: 10.1007/978-1-4939-7471-9_12.

引用本文的文献

1
Current methods in the diagnosis of invasive meningococcal disease.
Front Pediatr. 2025 Apr 22;13:1511086. doi: 10.3389/fped.2025.1511086. eCollection 2025.
2
Next-Generation Sequencing and Bioinformatics Consortium Approach to Genomic Surveillance.
Emerg Infect Dis. 2024 Oct;30(14):13-18. doi: 10.3201/eid3014.240306.
4
Analysis of microbiological profiles of Indian patients with peri-implantitis and periodontitis.
Bioinformation. 2024 Jun 30;20(6):615-619. doi: 10.6026/973206300200615. eCollection 2024.
5
Competition mode and soil nutrient status shape the role of soil microbes in the diversity-invasibility relationship.
Ecol Evol. 2024 May 14;14(5):e11425. doi: 10.1002/ece3.11425. eCollection 2024 May.
6
Virome profiling of fig wasps (Ceratosolen spp.) reveals virus diversity spanning four realms.
Virology. 2024 Mar;591:109992. doi: 10.1016/j.virol.2024.109992. Epub 2024 Jan 10.
7
The evolution of bacterial genome assemblies - where do we need to go next?
Microbiome Res Rep. 2022 Apr 12;1(3):15. doi: 10.20517/mrr.2022.02. eCollection 2022.
9
Highly multiplexed targeted sequencing strategy for infectious disease surveillance.
BMC Biotechnol. 2023 Aug 23;23(1):31. doi: 10.1186/s12896-023-00804-7.
10
Virus-pathogen interactions improve water quality along the Middle Route of the South-to-North Water Diversion Canal.
ISME J. 2023 Oct;17(10):1719-1732. doi: 10.1038/s41396-023-01481-2. Epub 2023 Jul 31.

本文引用的文献

2
Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.
PLoS One. 2013 Sep 11;8(9):e74787. doi: 10.1371/journal.pone.0074787. eCollection 2013.
3
Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing.
PLoS One. 2013 Sep 9;8(9):e73455. doi: 10.1371/journal.pone.0073455. eCollection 2013.
4
Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests.
PLoS One. 2013 Sep 4;8(9):e73935. doi: 10.1371/journal.pone.0073935. eCollection 2013.
5
Next generation sequencing for human papillomavirus genotyping.
J Clin Virol. 2013 Oct;58(2):437-42. doi: 10.1016/j.jcv.2013.07.013. Epub 2013 Aug 8.
7
How much metagenomic sequencing is enough to achieve a given goal?
Sci Rep. 2013;3:1968. doi: 10.1038/srep01968.
8
Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010.
PLoS Negl Trop Dis. 2013;7(3):e2095. doi: 10.1371/journal.pntd.0002095. Epub 2013 Mar 14.
10
Progress in ion torrent semiconductor chip based sequencing.
Electrophoresis. 2012 Dec;33(23):3397-417. doi: 10.1002/elps.201200424.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验