Suppr超能文献

地质时间跨度内的植物水分利用效率——影响植物气体交换的叶片气孔结构的演化。

Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

机构信息

Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, A.R.O.-Volcani Center, Bet Dagan, Israel.

出版信息

PLoS One. 2013 Jul 2;8(7):e67757. doi: 10.1371/journal.pone.0067757. Print 2013.

Abstract

Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

摘要

植物气体交换是塑造全球水文和碳循环的关键过程,通常以植物水分利用效率(WUE-二氧化碳吸收与水蒸气损失的比率)为特征。植物化石记录表明,植物对大气 CO2 变化的适应涉及到气孔密度(d)和大小(s)的相关进化,以及相关的最大孔径 amax。我们解释了显生宙期间 s 和 d 相关进化的化石记录,以量化对影响植物蒸腾作用 E 和二氧化碳吸收 A 的气体传导的影响,从而量化对植物 WUE 的影响。气孔结构从大 s-低 d 向小 s-高 d 的转变,以应对大气 CO2 的减少,导致植物气体交换特性发生了很大变化。气体传导 gws、A 和 E 与最大相对蒸腾叶面积(amax ⋅d)之间的关系表现出滞后行为。从 A 和 E 的独立估计中得出的新的 WUE 趋势与大气 CO2 浓度超过 1200ppm 时的既定 WUE-CO2 趋势不同。与标准方法得出的 CO2 减少时 WUE 近乎线性下降的结果相反,新估计的 WUE 趋势在大气 CO2 从 3500ppm 下降到 1200ppm 的延长地质时期表现出非常稳定的值。在进行更多测试之前,这些发现可能会影响对增加大气 CO2 对全球水文循环各组成部分的预期影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75de/3699479/15782a10f909/pone.0067757.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验