Suppr超能文献

胶原蛋白形态与纹理分析:从统计到分类

Collagen morphology and texture analysis: from statistics to classification.

作者信息

Mostaço-Guidolin Leila B, Ko Alex C-T, Wang Fei, Xiang Bo, Hewko Mark, Tian Ganghong, Major Arkady, Shiomi Masashi, Sowa Michael G

机构信息

National Research Council Canada, Medical Devices Portfolio 435 Ellice Avenue, Winnipeg, MB, Canada R3B 1Y6.

出版信息

Sci Rep. 2013;3:2190. doi: 10.1038/srep02190.

Abstract

In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage.

摘要

在本研究中,我们提出了一种图像分析方法,该方法能够量化由病理状况引起的组织胶原纤维组织形态学变化。我们探索了基于一阶统计(FOS)和二阶统计(如灰度共生矩阵(GLCM))的纹理分析,以提取与组织胶原网络的结构和生化变化相关的二次谐波产生(SHG)图像特征。基于这些提取的定量参数,对SHG图像进行了多组分类。结合FOS和GLCM纹理值,我们对从动脉粥样硬化动脉获取的SHG胶原图像进行了可靠分类,准确率、灵敏度和特异性均超过90%。所提出的方法可应用于广泛的涉及胶原重塑的病症,如皮肤疾病、不同类型的纤维化以及影响韧带和软骨的肌肉骨骼疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验