IEEE Trans Biomed Circuits Syst. 2008 Sep;2(3):231-44. doi: 10.1109/TBCAS.2008.2003199.
We present a neural stimulator chip with an output stage (electrode driving circuit) that is fail-safe under single-fault conditions without the need for off-chip blocking-capacitors. To miniaturize the stimulator output stage two novel techniques are introduced. The first technique is a new current generator circuit reducing to a single step the translation of the digital input bits into the stimulus current, thus minimizing silicon area and power consumption compared to previous works. The current generator uses voltage-controlled resistors implemented by MOS transistors in the deep triode region. The second technique is a new stimulator output stage circuit with blocking-capacitor safety protection using a high-frequency current-switching (HFCS) technique. Unlike conventional stimulator output stage circuits for implantable functional electrical stimulation (FES) systems which require blocking-capacitors in the microfarad range, our proposed approach allows capacitance reduction to the picofarad range, thus the blocking-capacitors can be integrated on-chip. The prototype four-channel neural stimulator chip was fabricated in XFAB's 1-mum silicon-on-insulator CMOS technology and can operate from a power supply between 5-18 V. The stimulus current is generated by active charging and passive discharging. We obtained recordings of action potentials and a strength-duration curve from the sciatic nerve of a frog with the stimulator chip which demonstrate the HFCS technique. The average power consumption for a typical 1-mA 20-Hz single-channel stimulation using a book electrode, is 200 muW from a 6 V power supply. The silicon area occupation is 0.38 mm(2) per channel.
我们提出了一种带有输出级(电极驱动电路)的神经刺激器芯片,该输出级在单个故障条件下是安全的,无需外部阻塞电容器。为了使刺激器输出级小型化,引入了两种新的技术。第一种技术是一种新的电流发生器电路,它将数字输入位转换为刺激电流的步骤减少到一个,与以前的工作相比,最小化了硅面积和功耗。电流发生器使用 MOS 晶体管在深三极管区域实现的电压控制电阻器。第二种技术是一种具有阻塞电容器安全保护的新型刺激器输出级电路,使用高频电流切换(HFCS)技术。与用于植入式功能性电刺激(FES)系统的传统刺激器输出级电路不同,我们提出的方法允许将电容减小到皮法范围,从而可以将阻塞电容器集成到芯片上。该原型四通道神经刺激器芯片是在 XFAB 的 1 微米硅绝缘体 CMOS 技术中制造的,可以在 5-18V 的电源下工作。刺激电流通过有源充电和无源放电产生。我们使用刺激器芯片从青蛙的坐骨神经中获得了动作电位的记录和强度-持续时间曲线,证明了 HFCS 技术。使用典型的 1mA、20Hz 单通道刺激,使用 book 电极,每个通道的平均功耗为 6V 电源下的 200µW。硅面积占用为每个通道 0.38mm²。