Suppr超能文献

实现用于接入外周神经的柔性生物电子药物——技术考量

Realizing flexible bioelectronic medicines for accessing the peripheral nerves - technology considerations.

作者信息

Giagka Vasiliki, Serdijn Wouter A

机构信息

1Section Bioelectronics, Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.

2Technologies for Bioelectronics Group, Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Microintegration IZM, Berlin, Germany.

出版信息

Bioelectron Med. 2018 Jun 26;4:8. doi: 10.1186/s42234-018-0010-y. eCollection 2018.

Abstract

Patients suffering from conditions such as paralysis, diabetes or rheumatoid arthritis could in the future be treated in a personalised manner using bioelectronic medicines (BEms) (Nat Rev Drug Discov 13:399-400, 2013, Proc Natl Acad Sci USA 113:8284-9, 2016, J Intern Med 282:37-45, 2017). To deliver this personalised therapy based on electricity, BEms need to target various sites in the human body and operate in a closed-loop manner. The specific conditions and anatomy of the targeted sites pose unique challenges in the development of BEms. With a focus on BEms based on flexible substrates for accessing small peripheral nerves, this paper discusses several system-level technology considerations related to the development of such devices. The focus is mainly on miniaturisation and long-term operation. We present an overview of common substrate and electrode materials, related processing methods, and discuss assembly, miniaturisation and long-term stability issues.

摘要

患有瘫痪、糖尿病或类风湿性关节炎等疾病的患者未来可能会使用生物电子药物(BEms)进行个性化治疗(《自然综述:药物发现》13:399 - 400,2013;《美国国家科学院院刊》113:8284 - 8289,2016;《内科医学杂志》282:37 - 45,2017)。为了基于电来提供这种个性化治疗,BEms需要靶向人体的各个部位并以闭环方式运行。靶向部位的特定条件和解剖结构给BEms的开发带来了独特的挑战。本文聚焦于基于柔性基板以接入小的外周神经的BEms,讨论了与这类设备开发相关的几个系统级技术考量。重点主要在于小型化和长期运行。我们概述了常见的基板和电极材料、相关加工方法,并讨论了组装、小型化和长期稳定性问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2012/7098212/3fa3c3387f1e/42234_2018_10_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验