Department of Biomedical Engineering, Columbia University, New York, New York 10025, USA.
J Biomed Opt. 2013 Jul;18(7):076002. doi: 10.1117/1.JBO.18.7.076002.
This is the second part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT) for diagnosing rheumatoid arthritis (RA). A comprehensive analysis of techniques for the classification of DOT images of proximal interphalangeal joints of subjects with and without RA is presented. A method for extracting heuristic features from DOT images was presented in Part 1. The ability of five classification algorithms to accurately label each DOT image as belonging to a subject with or without RA is analyzed here. The algorithms of interest are the k-nearest-neighbors, linear and quadratic discriminant analysis, self-organizing maps, and support vector machines (SVM). With a polynomial SVM classifier, we achieve 100.0% sensitivity and 97.8% specificity. Lower bounds for these results (at 95.0% confidence level) are 96.4% and 93.8%, respectively. Image features most predictive of RA are from the spatial variation of optical properties and the absolute range in feature values. The optimal classifiers are low-dimensional combinations (<7 features). These results underscore the high potential for DOT to become a clinically useful diagnostic tool and warrant larger prospective clinical trials to conclusively demonstrate the ultimate clinical utility of this approach.
这是关于应用计算机辅助诊断进行漫射光学断层扫描(DOT)以诊断类风湿性关节炎(RA)的两部分论文的第二部分。本文全面分析了对有和没有 RA 的受试者的近节指间关节的 DOT 图像进行分类的技术。在第一部分中提出了一种从 DOT 图像中提取启发式特征的方法。在此分析了五种分类算法准确地将每个 DOT 图像标记为属于有或没有 RA 的受试者的能力。感兴趣的算法是 k-最近邻、线性和二次判别分析、自组织映射和支持向量机(SVM)。使用多项式 SVM 分类器,我们实现了 100.0%的灵敏度和 97.8%的特异性。这些结果的下限(置信水平为 95.0%)分别为 96.4%和 93.8%。最能预测 RA 的图像特征来自光学特性的空间变化和特征值的绝对范围。最佳分类器是低维组合(<7 个特征)。这些结果强调了 DOT 成为一种有临床应用价值的诊断工具的巨大潜力,并需要更大规模的前瞻性临床试验来最终证明该方法的最终临床实用性。