Computer Laboratory, University of Cambridge, Cambridge, Cambs, England, United Kingdom.
Department of Oncology & Metabolism, University of Sheffield, Sheffield, South Yorkshire, England, United Kingdom.
PLoS One. 2020 Feb 21;15(2):e0228962. doi: 10.1371/journal.pone.0228962. eCollection 2020.
ChronoMID-neural networks for temporally-varying, hence Chrono, Medical Imaging Data-makes the novel application of cross-modal convolutional neural networks (X-CNNs) to the medical domain. In this paper, we present multiple approaches for incorporating temporal information into X-CNNs and compare their performance in a case study on the classification of abnormal bone remodelling in mice. Previous work developing medical models has predominantly focused on either spatial or temporal aspects, but rarely both. Our models seek to unify these complementary sources of information and derive insights in a bottom-up, data-driven approach. As with many medical datasets, the case study herein exhibits deep rather than wide data; we apply various techniques, including extensive regularisation, to account for this. After training on a balanced set of approximately 70000 images, two of the models-those using difference maps from known reference points-outperformed a state-of-the-art convolutional neural network baseline by over 30pp (> 99% vs. 68.26%) on an unseen, balanced validation set comprising around 20000 images. These models are expected to perform well with sparse data sets based on both previous findings with X-CNNs and the representations of time used, which permit arbitrarily large and irregular gaps between data points. Our results highlight the importance of identifying a suitable description of time for a problem domain, as unsuitable descriptors may not only fail to improve a model, they may in fact confound it.
ChronoMID-用于随时间变化的医学成像数据的神经网络-将跨模态卷积神经网络(X-CNN)的新颖应用引入医学领域。在本文中,我们提出了多种将时间信息纳入 X-CNN 的方法,并在对小鼠异常骨重塑分类的案例研究中比较了它们的性能。以前开发医学模型的工作主要集中在空间或时间方面,但很少同时考虑这两个方面。我们的模型试图统一这些互补的信息来源,并以自下而上、数据驱动的方式得出见解。与许多医学数据集一样,本文中的案例研究表现出深度而不是宽度的数据;我们应用了各种技术,包括广泛的正则化,以解决这个问题。在大约 70000 张图像的平衡集上进行训练后,两种模型-使用已知参考点的差值图的模型-在一个包含约 20000 张图像的看不见的平衡验证集上的表现优于最先进的卷积神经网络基线超过 30pp(>99%对 68.26%)。基于 X-CNN 的先前发现和用于时间的表示,这些模型有望在稀疏数据集上表现良好,因为不合适的描述符不仅可能无法改进模型,实际上可能会使模型变得混乱。
我们的结果强调了为问题域确定合适的时间描述的重要性,因为不合适的描述符不仅可能无法改进模型,实际上可能会使模型变得混乱。