WorldWide Antimalarial Resistance Network-WWARN, University of Oxford, Oxford, UK.
Malar J. 2013 Jul 17;12:249. doi: 10.1186/1475-2875-12-249.
Plasmodium falciparum has repeatedly evolved resistance to first-line anti-malarial drugs, thwarting efforts to control and eliminate the disease and in some period of time this contributed largely to an increase in mortality. Here a mathematical model was developed to map the spatiotemporal trends in the distribution of mutations in the P. falciparum dihydropteroate synthetase (dhps) gene that confer resistance to the anti-malarial sulphadoxine, and are a useful marker for the combination of alleles in dhfr and dhps that is highly correlated with resistance to sulphadoxine-pyrimethamine (SP). The aim of this study was to present a proof of concept for spatiotemporal modelling of trends in anti-malarial drug resistance that can be applied to monitor trends in resistance to components of artemisinin combination therapy (ACT) or other anti-malarials, as they emerge or spread.
Prevalence measurements of single nucleotide polymorphisms in three codon positions of the dihydropteroate synthetase (dhps) gene from published studies of dhps mutations across Africa were used. A model-based geostatistics approach was adopted to create predictive surfaces of the dhps540E mutation over the spatial domain of sub-Saharan Africa from 1990-2010. The statistical model was implemented within a Bayesian framework and hence quantified the associated uncertainty of the prediction of the prevalence of the dhps540E mutation in sub-Saharan Africa.
The maps presented visualize the changing prevalence of the dhps540E mutation in sub-Saharan Africa. These allow prediction of space-time trends in the parasite resistance to SP, and provide probability distributions of resistance prevalence in places where no data are available as well as insight on the spread of resistance in a way that the data alone do not allow. The results of this work will be extended to design optimal sampling strategies for the future molecular surveillance of resistance, providing a proof of concept for similar techniques to design optimal strategies to monitor resistance to ACT.
恶性疟原虫对一线抗疟药物反复产生耐药性,这阻碍了疾病的控制和消除,在某些时期,这在很大程度上导致了死亡率的上升。在这里,我们开发了一个数学模型,以绘制恶性疟原虫二氢叶酸合成酶(dhps)基因中导致对磺胺多辛耐药的突变的时空分布趋势,这些突变是 dhfr 和 dhps 等位基因组合与磺胺多辛-乙胺嘧啶(SP)耐药高度相关的有用标记。本研究的目的是提出一种概念验证,用于对抗疟药物耐药性趋势进行时空建模,以便能够监测青蒿素联合疗法(ACT)或其他抗疟药物成分耐药性的趋势,因为这些药物会出现或传播。
利用已发表的非洲各地 dhps 突变研究中三个密码子位置的二氢叶酸合成酶(dhps)基因单核苷酸多态性的流行率测量值。采用基于模型的地统计学方法,根据 1990-2010 年撒哈拉以南非洲地区的空间域,创建 dhps540E 突变的预测曲面。该统计模型是在贝叶斯框架内实施的,因此量化了撒哈拉以南非洲地区 dhps540E 突变流行率预测的相关不确定性。
呈现的地图可视化了撒哈拉以南非洲地区 dhps540E 突变的流行率变化。这些地图可以预测 SP 寄生虫耐药性的时空趋势,并提供没有数据的地方的耐药性流行概率分布,以及以数据本身无法提供的方式洞察耐药性的传播。这项工作的结果将扩展到设计未来针对耐药性的分子监测的最佳采样策略,为类似技术设计监测 ACT 耐药性的最佳策略提供概念验证。