Department of Neurology, Technische Universität München, Munich, Germany.
PLoS One. 2013 Jul 17;8(7):e68196. doi: 10.1371/journal.pone.0068196. Print 2013.
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
针对与正常衰老和神经退行性过程相关的铁相关 T2 低信号强度,我们提出了两种基于贝叶斯推断的实用方法,用于对一组复杂的结构 MRI 数据进行预处理和统计分析。特别是,我们使用马尔可夫链蒙特卡罗方法来模拟后验分布。首先,我们提出了一种分割算法,该算法使用基于模型检查技术的异常值检测在贝叶斯混合模型中。其次,我们提出了一个分析工具,该工具包含一个具有平滑先验(以高斯马尔可夫随机场的形式)的贝叶斯回归模型,从而减少了在进行统计分析之前对数据进行平滑处理的必要性。为了验证,我们使用模拟数据和 27 名健康对照者的 MRI 数据(年龄:[公式:见文本];范围,[公式:见文本])。我们首先观察到模拟 T2 低信号强度和已知 T2 低信号强度的灰质区域的稳健分割。其次,对模拟 T2 低信号强度和分割的 T2 低信号强度图像进行了分析。我们不仅发现了模拟效果的稳健识别,而且还发现了 T2 低信号强度与年龄相关的增加,主要发生在齿状核内,但也发生在苍白球、黑质和红核内。我们的结果表明,完全贝叶斯推断可以成功地应用于结构 MRI 数据的预处理和统计分析。