Suppr超能文献

使用单次电生理数据解码母语和非母语说话者的言语感知。

Decoding speech perception by native and non-native speakers using single-trial electrophysiological data.

机构信息

Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.

出版信息

PLoS One. 2013 Jul 11;8(7):e68261. doi: 10.1371/journal.pone.0068261. Print 2013.

Abstract

Brain-computer interfaces (BCIs) are systems that use real-time analysis of neuroimaging data to determine the mental state of their user for purposes such as providing neurofeedback. Here, we investigate the feasibility of a BCI based on speech perception. Multivariate pattern classification methods were applied to single-trial EEG data collected during speech perception by native and non-native speakers. Two principal questions were asked: 1) Can differences in the perceived categories of pairs of phonemes be decoded at the single-trial level? 2) Can these same categorical differences be decoded across participants, within or between native-language groups? Results indicated that classification performance progressively increased with respect to the categorical status (within, boundary or across) of the stimulus contrast, and was also influenced by the native language of individual participants. Classifier performance showed strong relationships with traditional event-related potential measures and behavioral responses. The results of the cross-participant analysis indicated an overall increase in average classifier performance when trained on data from all participants (native and non-native). A second cross-participant classifier trained only on data from native speakers led to an overall improvement in performance for native speakers, but a reduction in performance for non-native speakers. We also found that the native language of a given participant could be decoded on the basis of EEG data with accuracy above 80%. These results indicate that electrophysiological responses underlying speech perception can be decoded at the single-trial level, and that decoding performance systematically reflects graded changes in the responses related to the phonological status of the stimuli. This approach could be used in extensions of the BCI paradigm to support perceptual learning during second language acquisition.

摘要

脑机接口(BCI)是一种使用实时神经影像学数据分析来确定用户精神状态的系统,目的是提供神经反馈。在这里,我们研究了基于语音感知的 BCI 的可行性。我们应用多变量模式分类方法对母语和非母语使用者在感知语音时采集的单次试验 EEG 数据进行了分析。提出了两个主要问题:1)能否在单次试验水平上解码对语音感知中感知类别的差异?2)这些相同的类别差异能否在参与者内、参与者间或母语群体间进行解码?结果表明,分类性能随着刺激对比的类别状态(内部分类、边界分类或跨分类)的增加而逐步提高,也受到个体参与者母语的影响。分类器性能与传统事件相关电位测量和行为反应有很强的关系。跨参与者分析的结果表明,当使用所有参与者(母语者和非母语者)的数据进行训练时,平均分类器性能总体上有所提高。另一个仅使用母语者数据进行训练的跨参与者分类器,提高了母语者的整体性能,但降低了非母语者的性能。我们还发现,根据 EEG 数据,参与者的母语可以以超过 80%的准确率进行解码。这些结果表明,语音感知的电生理反应可以在单次试验水平上进行解码,并且解码性能系统地反映了与刺激音系状态相关的反应的分级变化。这种方法可用于 BCI 范式的扩展,以支持第二语言习得过程中的感知学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7fd/3708957/addff3e1bfc6/pone.0068261.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验