Department of Mathematical Sciences, Northern Illinois University, Dekalb, IL 60115, United States.
Math Biosci Eng. 2013 Aug;10(4):1207-26. doi: 10.3934/mbe.2013.10.1207.
We describe a necessary condition for zero-eigenvalue Turing instability, i.e., Turing instability arising from a real eigenvalue changing sign from negative to positive, for general chemical reaction networks modeled with mass-action kinetics. The reaction mechanisms are represented by the species-reaction graph (SR graph), which is a bipartite graph with different nodes representing species and reactions. If the SR graph satisfies certain conditions, similar to the conditions for ruling out multiple equilibria in spatially homogeneous differential equations systems, then the corresponding mass-action reaction-diffusion system cannot exhibit zero-eigenvalue Turing instability for any parameter values. On the other hand, if the graph-theoretic condition for ruling out zero-eigenvalue Turing instability is not satisfied, then the corresponding model may display zero-eigenvalue Turing instability for some parameter values. The technique is illustrated with a model of a bifunctional enzyme.
我们描述了一个零特征值 Turing 不稳定性的必要条件,即源于实特征值从负变正的 Turing 不稳定性,适用于用质量作用动力学建模的一般化学反应网络。反应机制由物种-反应图(SR 图)表示,这是一个具有不同节点表示物种和反应的二部图。如果 SR 图满足某些条件,类似于排除空间均匀微分方程系统中多个平衡点的条件,那么相应的质量作用反应-扩散系统对于任何参数值都不能表现出零特征值 Turing 不稳定性。另一方面,如果不满足排除零特征值 Turing 不稳定性的图论条件,那么相应的模型在某些参数值下可能会显示零特征值 Turing 不稳定性。该技术通过一个双功能酶模型进行了说明。