Department of Biomedical Informatics, Columbia University, New York, New York, USA.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):308-14. doi: 10.1136/amiajnl-2013-001718. Epub 2013 Aug 1.
Electronic health records (EHRs) contain information to detect adverse drug reactions (ADRs), as they contain comprehensive clinical information. A major challenge of using comprehensive information involves confounding. We propose a novel data-driven method to identify ADR signals accurately by adjusting for confounders.
We focused on two serious ADRs, rhabdomyolysis and pancreatitis, and used information in 264,155 unique patient records. We identified an ADR using established criteria, selected potential confounders, and then used penalized logistic regressions to estimate confounder-adjusted ADR associations. A reference standard was created to evaluate and compare the precision of the proposed method and four others.
Precision was 83.3% for rhabdomyolysis and 60.8% for pancreatitis when using the proposed method, and we identified several drug safety signals that are interesting for further clinical review.
The proposed method effectively estimated ADR associations after adjusting for confounders. A main cause of error was probably due to the nature of the dataset in that a substantial number of patients had a single visit only and, therefore, it was not possible to determine correctly the appropriate sequence of events for them. It is likely that performance will be improved with use of EHR data that contain more longitudinal records.
This data-driven method is effective in controlling for confounding, resulting in either a higher or similar precision when compared with four comparators, has the unique ability to provide insight into confounders for each specific medication-ADR pair, and can be easily adapted to other EHR systems.
电子健康记录(EHR)包含了检测药物不良反应(ADR)的信息,因为它们包含了全面的临床信息。使用全面信息的一个主要挑战是混杂因素。我们提出了一种新的数据驱动方法,通过调整混杂因素来准确识别 ADR 信号。
我们专注于两种严重的 ADR,横纹肌溶解症和胰腺炎,并使用了 264155 个独特患者记录中的信息。我们使用既定标准来识别 ADR,选择潜在的混杂因素,然后使用惩罚逻辑回归来估计混杂因素调整后的 ADR 关联。创建了一个参考标准来评估和比较所提出方法与其他四种方法的精度。
使用所提出的方法,横纹肌溶解症的精度为 83.3%,胰腺炎的精度为 60.8%,并且我们确定了一些药物安全信号,这些信号对于进一步的临床审查很有趣。
所提出的方法在调整混杂因素后有效地估计了 ADR 关联。一个主要的错误原因可能是由于数据集的性质,即相当数量的患者只有一次就诊,因此不可能正确确定他们的适当事件序列。随着使用包含更多纵向记录的 EHR 数据,性能可能会得到提高。
这种数据驱动方法在控制混杂因素方面非常有效,与四个比较器相比,要么精度更高,要么精度相似,具有为每个特定药物-ADR 对提供混杂因素见解的独特能力,并且可以轻松适应其他 EHR 系统。