Carlson David E, Vogelstein Joshua T, Stoetzner Colin R, Kipke Daryl, Weber Douglas, Dunson David B, Carin Lawrence
IEEE Trans Biomed Eng. 2014 Jan;61(1):41-54. doi: 10.1109/TBME.2013.2275751. Epub 2013 Jul 30.
We propose a methodology for joint feature learning and clustering of multichannel extracellular electrophysiological data, across multiple recording periods for action potential detection and classification (sorting). Our methodology improves over the previous state of the art principally in four ways. First, via sharing information across channels, we can better distinguish between single-unit spikes and artifacts. Second, our proposed "focused mixture model" (FMM) deals with units appearing, disappearing, or reappearing over multiple recording days, an important consideration for any chronic experiment. Third, by jointly learning features and clusters, we improve performance over previous attempts that proceeded via a two-stage learning process. Fourth, by directly modeling spike rate, we improve the detection of sparsely firing neurons. Moreover, our Bayesian methodology seamlessly handles missing data. We present the state-of-the-art performance without requiring manually tuning hyperparameters, considering both a public dataset with partial ground truth and a new experimental dataset.
我们提出了一种用于多通道细胞外电生理数据的联合特征学习和聚类的方法,该方法适用于多个记录周期,用于动作电位检测和分类(分选)。我们的方法主要在四个方面比先前的技术水平有所改进。第一,通过跨通道共享信息,我们可以更好地区分单单元尖峰和伪迹。第二,我们提出的“聚焦混合模型”(FMM)处理在多个记录日出现、消失或重新出现的单元,这是任何慢性实验的一个重要考虑因素。第三,通过联合学习特征和聚类,我们比之前通过两阶段学习过程进行的尝试提高了性能。第四,通过直接对尖峰率进行建模,我们改进了对稀疏放电神经元的检测。此外,我们的贝叶斯方法能够无缝处理缺失数据。我们展示了在不需要手动调整超参数的情况下的最先进性能,同时考虑了一个具有部分地面真值的公共数据集和一个新的实验数据集。