Suppr超能文献

评估改变所接受治疗的干预措施的效果。

Estimation of the effect of interventions that modify the received treatment.

作者信息

Haneuse S, Rotnitzky A

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA, U.S.A.

出版信息

Stat Med. 2013 Dec 30;32(30):5260-77. doi: 10.1002/sim.5907. Epub 2013 Aug 2.

Abstract

Motivated by a study of surgical operating time and post-operative outcomes for lung cancer, we consider the estimation of causal effects of continuous point-exposure treatments. To investigate causality, the standard paradigm postulates a series of treatment-specific counterfactual outcomes and establishes conditions under which we may learn about them from observational study data. While many choices are possible, causal effects are typically defined in terms of variation of the mean of counterfactual outcomes in hypothetical worlds in which specific treatment strategies are 'applied' to all individuals. For example, one might compare two worlds: one where each individual receives some specific dose and a second where each individual receives some other dose. For our motivating study, defining causal effects in this way corresponds to (hypothetical) interventions that could not conceivably be implemented in the real world. In this work, we consider an alternative, complimentary framework that investigates variation in the mean of counterfactual outcomes under hypothetical treatment strategies where each individual receives a treatment dose corresponding to that actually received but modified in some pre-specified way. Quantification of this variation is defined in terms of contrasts for specific interventions as well as in terms of the parameters of a new class of marginal structural mean models. Within this framework, we propose three estimators: an outcome regression estimator, an inverse probability of treatment weighted estimator and a doubly robust estimator. We illustrate the methods with an analysis of the motivating data.

摘要

受一项关于肺癌手术时间和术后结果研究的启发,我们考虑对连续点暴露治疗的因果效应进行估计。为了研究因果关系,标准范式假定了一系列特定治疗的反事实结果,并建立了一些条件,在这些条件下我们可以从观察性研究数据中了解这些结果。虽然有许多可能的选择,但因果效应通常是根据在假设世界中反事实结果均值的变化来定义的,在这些假设世界中,特定的治疗策略被“应用”于所有个体。例如,人们可能会比较两个世界:一个世界中每个个体接受某种特定剂量,另一个世界中每个个体接受另一种剂量。对于我们的激励性研究,以这种方式定义因果效应对应于在现实世界中难以想象能够实施的(假设)干预措施。在这项工作中,我们考虑一种替代的、互补的框架,该框架研究在假设治疗策略下反事实结果均值的变化,在这些策略中,每个个体接受与实际接受的剂量相对应但以某种预先指定的方式进行修改的治疗剂量。这种变化的量化是根据特定干预的对比以及一类新的边际结构均值模型的参数来定义的。在这个框架内,我们提出了三种估计器:一种结果回归估计器、一种治疗加权逆概率估计器和一种双重稳健估计器。我们通过对激励性数据的分析来说明这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验