Suppr超能文献

基于 GPU 的生物医学信号分析的交叉近似熵并行计算。在 MEG 记录中的应用。

Cross-Approximate Entropy parallel computation on GPUs for biomedical signal analysis. Application to MEG recordings.

机构信息

Imaging and Telematics Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain.

出版信息

Comput Methods Programs Biomed. 2013 Oct;112(1):189-99. doi: 10.1016/j.cmpb.2013.07.005. Epub 2013 Jul 31.

Abstract

Cross-Approximate Entropy (Cross-ApEn) is a useful measure to quantify the statistical dissimilarity of two time series. In spite of the advantage of Cross-ApEn over its one-dimensional counterpart (Approximate Entropy), only a few studies have applied it to biomedical signals, mainly due to its high computational cost. In this paper, we propose a fast GPU-based implementation of the Cross-ApEn that makes feasible its use over a large amount of multidimensional data. The scheme followed is fully scalable, thus maximizes the use of the GPU despite of the number of neural signals being processed. The approach consists in processing many trials or epochs simultaneously, with independence of its origin. In the case of MEG data, these trials can proceed from different input channels or subjects. The proposed implementation achieves an average speedup greater than 250× against a CPU parallel version running on a processor containing six cores. A dataset of 30 subjects containing 148 MEG channels (49 epochs of 1024 samples per channel) can be analyzed using our development in about 30min. The same processing takes 5 days on six cores and 15 days when running on a single core. The speedup is much larger if compared to a basic sequential Matlab(®) implementation, that would need 58 days per subject. To our knowledge, this is the first contribution of Cross-ApEn measure computation using GPUs. This study demonstrates that this hardware is, to the day, the best option for the signal processing of biomedical data with Cross-ApEn.

摘要

交叉近似熵(Cross-ApEn)是一种用于量化两个时间序列统计相似性的有用度量方法。尽管 Cross-ApEn 相对于其一维对应物(近似熵)具有优势,但仅少数研究将其应用于生物医学信号,主要是由于其计算成本高。在本文中,我们提出了一种基于 GPU 的快速实现 Cross-ApEn 的方法,使其能够用于大量多维数据。所采用的方案是完全可扩展的,因此即使处理的神经信号数量增加,也能最大限度地利用 GPU。该方法包括同时处理许多试验或时间段,而与它们的来源无关。在 MEG 数据的情况下,这些试验可以来自不同的输入通道或受试者。与在包含六个内核的处理器上运行的 CPU 并行版本相比,所提出的实现平均加速超过 250 倍。对于包含 30 个受试者的数据集,每个受试者包含 148 个 MEG 通道(每个通道 49 个 1024 个样本的周期),可以使用我们的开发在大约 30 分钟内进行分析。在六个内核上进行相同的处理需要 5 天,而在单个内核上运行则需要 15 天。如果与基本的顺序 Matlab(®)实现相比,加速会更大,后者每个受试者需要 58 天。据我们所知,这是首次使用 GPU 计算 Cross-ApEn 度量的贡献。这项研究表明,到目前为止,对于使用 Cross-ApEn 对生物医学数据进行信号处理,这种硬件是最佳选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验