Suppr超能文献

基于接触线固定的微流控平台用于模拟生理流动。

A contact line pinning based microfluidic platform for modelling physiological flows.

机构信息

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.

出版信息

Lab Chip. 2013 Oct 7;13(19):3876-85. doi: 10.1039/c3lc50489a.

Abstract

This work introduces a contact line pinning based microfluidic platform for the generation of interstitial and intramural flows within a three dimensional (3D) microenvironment for cellular behaviour studies. A contact line pinning method was used to confine a natively derived biomatrix, collagen, in microfluidic channels without walls. By patterning collagen in designated wall-less channels, we demonstrated and validated the intramural flows through a microfluidic channel bounded by a monolayer of endothelial cells (mimic of a vascular vessel), as well as slow interstitial flows within a cell laden collagen matrix using the same microfluidic platform. The contact line pinning method ensured the generation of an engineered endothelial tube with straight walls, and spatially uniform interstitial fluid flows through the cell embedded 3D collagen matrix. Using this device, we demonstrated that the breast tumour cells' (MDA-MB-231 cell line) morphology and motility were modulated by the interstitial flows, and the motility of a sub-population of the cells was enhanced by the presence of the flow. The presented microfluidic platform provides a basic framework for studies of cellular behaviour including cell transmigration, growth, and adhesion under well controlled interstitial and intramural flows, and within a physiologically realistic 3D co-culture setting.

摘要

这项工作介绍了一种基于接触线固定的微流控平台,用于在三维(3D)微环境中产生细胞行为研究中的间质和壁内流动。采用接触线固定方法将天然衍生的生物基质胶原限制在无微通道中而无需壁。通过在无壁通道中对胶原进行图案化,我们展示并验证了通过由单层内皮细胞(模拟血管)限定的微流通道的壁内流动,以及使用相同的微流控平台在细胞负载的胶原基质内的缓慢间质流动。接触线固定方法确保了具有直壁的工程化内皮管的生成,以及通过细胞嵌入的 3D 胶原基质的空间均匀间质流体流动。使用该装置,我们证明了间质流动调节了乳腺癌细胞(MDA-MB-231 细胞系)的形态和迁移性,并且流动的存在增强了细胞亚群的迁移性。所提出的微流控平台为细胞行为研究提供了基本框架,包括在良好控制的间质和壁内流动以及生理上逼真的 3D 共培养环境下的细胞迁移、生长和粘附。

相似文献

1
A contact line pinning based microfluidic platform for modelling physiological flows.
Lab Chip. 2013 Oct 7;13(19):3876-85. doi: 10.1039/c3lc50489a.
3
Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
Tissue Eng Part C Methods. 2014 Jan;20(1):64-75. doi: 10.1089/ten.TEC.2012.0731. Epub 2013 Jul 12.
7
Engineering microscale cellular niches for three-dimensional multicellular co-cultures.
Lab Chip. 2009 Jun 21;9(12):1740-8. doi: 10.1039/b818401a. Epub 2009 Mar 18.
8
Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices.
Biomaterials. 2009 Sep;30(27):4833-41. doi: 10.1016/j.biomaterials.2009.05.043. Epub 2009 Jun 21.
10
Microfluidic model of angiogenic sprouting.
Methods Mol Biol. 2015;1214:243-54. doi: 10.1007/978-1-4939-1462-3_15.

引用本文的文献

1
Spatially selective delivery of living magnetic microrobots through torque-focusing.
Nat Commun. 2024 Mar 9;15(1):2160. doi: 10.1038/s41467-024-46407-4.
2
Microfluidics and Organoids, the Power Couple of Developmental Biology and Oncology Studies.
Int J Mol Sci. 2023 Jun 29;24(13):10882. doi: 10.3390/ijms241310882.
4
An Easy-to-Fabricate Microfluidic Shallow Trench Induced Three-Dimensional Cell Culturing and Imaging (STICI3D) Platform.
ACS Omega. 2022 Mar 2;7(10):8281-8293. doi: 10.1021/acsomega.1c05118. eCollection 2022 Mar 15.
5
A Pillar-Free Diffusion Device for Studying Chemotaxis on Supported Lipid Bilayers.
Micromachines (Basel). 2021 Oct 16;12(10):1254. doi: 10.3390/mi12101254.
6
The architecture of co-culture spheroids regulates tumor invasion within a 3D extracellular matrix.
Biophys Rev Lett. 2020 Sep;15(3):131-141. doi: 10.1142/s1793048020500034. Epub 2020 Jul 13.
9
Open Microfluidic Capillary Systems.
Anal Chem. 2019 Jul 16;91(14):8739-8750. doi: 10.1021/acs.analchem.9b01429. Epub 2019 Jul 1.
10
Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.
Lab Chip. 2017 Sep 26;17(19):3221-3233. doi: 10.1039/c7lc00623c.

本文引用的文献

1
Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model.
PLoS One. 2013 Jul 15;8(7):e68422. doi: 10.1371/journal.pone.0068422. Print 2013.
2
Engineering of functional, perfusable 3D microvascular networks on a chip.
Lab Chip. 2013 Apr 21;13(8):1489-500. doi: 10.1039/c3lc41320a.
5
Full range physiological mass transport control in 3D tissue cultures.
Lab Chip. 2013 Jan 7;13(1):81-9. doi: 10.1039/c2lc40787f. Epub 2012 Oct 22.
6
Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. doi: 10.1073/pnas.1210182109. Epub 2012 Aug 6.
8
Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions.
Integr Biol (Camb). 2012 Aug;4(8):863-74. doi: 10.1039/c2ib00184e. Epub 2012 Jun 7.
9
Roles of cell confluency and fluid shear in 3-dimensional intracellular forces in endothelial cells.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11110-5. doi: 10.1073/pnas.1207326109. Epub 2012 Jun 4.
10
In vitro microvessels for the study of angiogenesis and thrombosis.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9342-7. doi: 10.1073/pnas.1201240109. Epub 2012 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验