Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, USA.
Lab Chip. 2017 Sep 26;17(19):3221-3233. doi: 10.1039/c7lc00623c.
Tumor cell invasion, whether penetrating through the extracellular matrix (ECM) or crossing a vascular endothelium, is a critical step in the cancer metastatic cascade. Along the way from a primary tumor to a distant metastatic site, tumor cells interact actively with the microenvironment either via biomechanical (e. g. ECM stiffness) or biochemical (e.g. secreted cytokines) signals. Increasingly, it is recognized that the tumor microenvironment (TME) is a critical player in tumor cell invasion. A main challenge for the mechanistic understanding of tumor cell-TME interactions comes from the complexity of the TME, which consists of extracellular matrices, fluid flows, cytokine gradients and other cell types. It is difficult to control TME parameters in conventional in vitro experimental designs such as Boyden chambers or in vivo such as in mouse models. Microfluidics has emerged as an enabling tool for exploring the TME parameter space because of its ease of use in recreating a complex and physiologically realistic three dimensional TME with well-defined spatial and temporal control. In this perspective, we will discuss designing principles for modeling the biophysical microenvironment (biological flows and ECM) for tumor cells using microfluidic devices and the potential microfluidic technology holds in recreating a physiologically realistic tumor microenvironment. The focus will be on applications of microfluidic models in tumor cell invasion.
肿瘤细胞的侵袭,无论是穿透细胞外基质(ECM)还是穿过血管内皮,都是癌症转移级联中的关键步骤。在从原发性肿瘤到远处转移部位的过程中,肿瘤细胞通过生物力学(例如 ECM 硬度)或生化(例如分泌的细胞因子)信号与微环境积极相互作用。越来越多的人认识到肿瘤微环境(TME)是肿瘤细胞侵袭的关键参与者。对于肿瘤细胞-TME 相互作用的机制理解的主要挑战来自 TME 的复杂性,它由细胞外基质、流体流动、细胞因子梯度和其他细胞类型组成。在传统的体外实验设计(如 Boyden 室)或体内(如小鼠模型)中,很难控制 TME 参数。微流控技术因其易于在具有明确时空控制的复杂和生理现实的三维 TME 中重现而成为探索 TME 参数空间的一种手段。在这个视角中,我们将讨论使用微流控设备模拟肿瘤细胞的生物物理微环境(生物流动和 ECM)的设计原则,以及微流控技术在重现生理现实肿瘤微环境方面的潜力。重点将放在微流控模型在肿瘤细胞侵袭中的应用上。