Suppr超能文献

肿瘤细胞浸润中的生物物理微环境的微流控建模。

Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.

机构信息

Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, USA.

出版信息

Lab Chip. 2017 Sep 26;17(19):3221-3233. doi: 10.1039/c7lc00623c.

Abstract

Tumor cell invasion, whether penetrating through the extracellular matrix (ECM) or crossing a vascular endothelium, is a critical step in the cancer metastatic cascade. Along the way from a primary tumor to a distant metastatic site, tumor cells interact actively with the microenvironment either via biomechanical (e. g. ECM stiffness) or biochemical (e.g. secreted cytokines) signals. Increasingly, it is recognized that the tumor microenvironment (TME) is a critical player in tumor cell invasion. A main challenge for the mechanistic understanding of tumor cell-TME interactions comes from the complexity of the TME, which consists of extracellular matrices, fluid flows, cytokine gradients and other cell types. It is difficult to control TME parameters in conventional in vitro experimental designs such as Boyden chambers or in vivo such as in mouse models. Microfluidics has emerged as an enabling tool for exploring the TME parameter space because of its ease of use in recreating a complex and physiologically realistic three dimensional TME with well-defined spatial and temporal control. In this perspective, we will discuss designing principles for modeling the biophysical microenvironment (biological flows and ECM) for tumor cells using microfluidic devices and the potential microfluidic technology holds in recreating a physiologically realistic tumor microenvironment. The focus will be on applications of microfluidic models in tumor cell invasion.

摘要

肿瘤细胞的侵袭,无论是穿透细胞外基质(ECM)还是穿过血管内皮,都是癌症转移级联中的关键步骤。在从原发性肿瘤到远处转移部位的过程中,肿瘤细胞通过生物力学(例如 ECM 硬度)或生化(例如分泌的细胞因子)信号与微环境积极相互作用。越来越多的人认识到肿瘤微环境(TME)是肿瘤细胞侵袭的关键参与者。对于肿瘤细胞-TME 相互作用的机制理解的主要挑战来自 TME 的复杂性,它由细胞外基质、流体流动、细胞因子梯度和其他细胞类型组成。在传统的体外实验设计(如 Boyden 室)或体内(如小鼠模型)中,很难控制 TME 参数。微流控技术因其易于在具有明确时空控制的复杂和生理现实的三维 TME 中重现而成为探索 TME 参数空间的一种手段。在这个视角中,我们将讨论使用微流控设备模拟肿瘤细胞的生物物理微环境(生物流动和 ECM)的设计原则,以及微流控技术在重现生理现实肿瘤微环境方面的潜力。重点将放在微流控模型在肿瘤细胞侵袭中的应用上。

相似文献

1
Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.
Lab Chip. 2017 Sep 26;17(19):3221-3233. doi: 10.1039/c7lc00623c.
3
Microfluidics meets 3D cancer cell migration.
Trends Cancer. 2022 Aug;8(8):683-697. doi: 10.1016/j.trecan.2022.03.006. Epub 2022 May 12.
4
Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches.
Dis Model Mech. 2018 Mar 16;11(3):dmm033100. doi: 10.1242/dmm.033100.
5
A microfluidic platform for modeling metastatic cancer cell matrix invasion.
Biofabrication. 2017 Sep 1;9(4):045001. doi: 10.1088/1758-5090/aa869d.
7
Breast cancer models: Engineering the tumor microenvironment.
Acta Biomater. 2020 Apr 1;106:1-21. doi: 10.1016/j.actbio.2020.02.006. Epub 2020 Feb 9.
8
High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment.
Acta Biomater. 2021 Sep 15;132:473-488. doi: 10.1016/j.actbio.2021.06.025. Epub 2021 Jun 18.
9
A bioengineered organotypic prostate model for the study of tumor microenvironment-induced immune cell activation.
Integr Biol (Camb). 2020 Oct 16;12(10):250-262. doi: 10.1093/intbio/zyaa020.
10
The microenvironment and cytoskeletal remodeling in tumor cell invasion.
Int Rev Cell Mol Biol. 2020;356:257-289. doi: 10.1016/bs.ircmb.2020.06.003. Epub 2020 Jul 4.

引用本文的文献

1
Decoding physical principles of cell migration under controlled environment using microfluidics.
Biophys Rev (Melville). 2024 Jul 29;5(3):031302. doi: 10.1063/5.0199161. eCollection 2024 Sep.
2
Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment.
Biomicrofluidics. 2024 Jun 17;18(3):031506. doi: 10.1063/5.0206058. eCollection 2024 May.
3
Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype.
Front Cell Dev Biol. 2023 May 5;11:1188499. doi: 10.3389/fcell.2023.1188499. eCollection 2023.
4
Recent advances of integrated microfluidic suspension cell culture system.
Eng Biol. 2021 Oct 11;5(4):103-119. doi: 10.1049/enb2.12015. eCollection 2021 Dec.
6
Spheroid Engineering in Microfluidic Devices.
ACS Omega. 2023 Jan 18;8(4):3630-3649. doi: 10.1021/acsomega.2c06052. eCollection 2023 Jan 31.
8
Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology.
Cancers (Basel). 2021 Dec 1;13(23):6052. doi: 10.3390/cancers13236052.
9

本文引用的文献

3
DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration.
Curr Biol. 2017 Jan 23;27(2):210-223. doi: 10.1016/j.cub.2016.11.049. Epub 2016 Dec 15.
4
Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14043-14048. doi: 10.1073/pnas.1613058113. Epub 2016 Nov 21.
5
FMN2 Makes Perinuclear Actin to Protect Nuclei during Confined Migration and Promote Metastasis.
Cell. 2016 Dec 1;167(6):1571-1585.e18. doi: 10.1016/j.cell.2016.10.023. Epub 2016 Nov 10.
7
Polymerase chain reaction in microfluidic devices.
Lab Chip. 2016 Oct 5;16(20):3866-3884. doi: 10.1039/c6lc00984k.
8
Oriented collagen fibers direct tumor cell intravasation.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11208-11213. doi: 10.1073/pnas.1610347113. Epub 2016 Sep 23.
9
A Microfluidic Method to Mimic Luminal Structures in the Tumor Microenvironment.
Methods Mol Biol. 2016;1458:59-69. doi: 10.1007/978-1-4939-3801-8_5.
10
3D microtumors in vitro supported by perfused vascular networks.
Sci Rep. 2016 Aug 23;6:31589. doi: 10.1038/srep31589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验