Suppr超能文献

蝇类的运动视觉。

Fly motion vision.

机构信息

Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany.

出版信息

Annu Rev Neurosci. 2010;33:49-70. doi: 10.1146/annurev-neuro-060909-153155.

Abstract

Fly motion vision and resultant compensatory optomotor responses are a classic example for neural computation. Here we review our current understanding of processing of optic flow as generated by an animal's self-motion. Optic flow processing is accomplished in a series of steps: First, the time-varying photoreceptor signals are fed into a two-dimensional array of Reichardt-type elementary motion detectors (EMDs). EMDs compute, in parallel, local motion vectors at each sampling point in space. Second, the output signals of many EMDs are spatially integrated on the dendrites of large-field tangential cells in the lobula plate. In the third step, tangential cells form extensive interactions with each other, giving rise to their large and complex receptive fields. Thus, tangential cells can act as matched filters tuned to optic flow during particular flight maneuvers. They finally distribute their information onto postsynaptic descending neurons, which either instruct the motor centers of the thoracic ganglion for flight and locomotion control or act themselves as motor neurons that control neck muscles for head movements.

摘要

飞行运动视觉和由此产生的补偿性运动视觉反应是神经计算的一个经典范例。在这里,我们回顾了我们目前对动物自身运动产生的光流处理的理解。光流处理是通过一系列步骤完成的:首先,时变光感受器信号被输入到二维的里查德特型基本运动检测器(EMD)阵列中。EMD 以并行方式计算空间中每个采样点的局部运动矢量。其次,许多 EMD 的输出信号在小叶板的大视野切向细胞的树突上进行空间整合。在第三步中,切向细胞彼此之间形成广泛的相互作用,产生它们的大而复杂的感受野。因此,切向细胞可以作为匹配滤波器,在特定的飞行机动中调谐光流。它们最终将信息分配到突触后下行神经元上,这些神经元要么指导胸部神经节的运动中心进行飞行和运动控制,要么自身作为控制头部运动的颈部肌肉的运动神经元。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验