Suppr超能文献

定义果蝇运动探测器的计算结构。

Defining the computational structure of the motion detector in Drosophila.

机构信息

Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

出版信息

Neuron. 2011 Jun 23;70(6):1165-77. doi: 10.1016/j.neuron.2011.05.023.

Abstract

Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt correlator (HRC), relates visual inputs to neural activity and behavioral responses to motion, but the circuits that implement this computation remain unknown. By using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, "reverse phi," that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection.

摘要

许多动物依赖于视觉运动检测来生存。运动信息是从视网膜上的时空强度模式中提取出来的,这是一种典型的神经计算。一个现象学模型,即 Hassenstein-Reichardt 相关器 (HRC),将视觉输入与神经活动和对运动的行为反应联系起来,但实现这种计算的电路仍然未知。通过使用细胞类型特异性基因沉默、最小运动刺激和在体钙成像,我们研究了两个关键的 HRC 输入。这两条通路对光暗移动边缘的反应更为敏感。我们证明,这些通路在 HRC 所基于的计算中执行重叠但互补的子集。实现这些操作的差分加权的数值模型显示了观察到的边缘偏好。有趣的是,这些通路的区别在于它们对一种刺激相关的敏感性,这种相关性对应于一种幻觉“反向 phi”,这种幻觉影响着许多物种。因此,这种计算架构可能被广泛用于实现运动检测中的边缘选择性。

相似文献

4
Orientation Selectivity Sharpens Motion Detection in Drosophila.方向选择性增强果蝇的运动检测能力。
Neuron. 2015 Oct 21;88(2):390-402. doi: 10.1016/j.neuron.2015.09.033. Epub 2015 Oct 8.
5
Internal structure of the fly elementary motion detector.蝇初级运动检测器的内部结构。
Neuron. 2011 Jun 23;70(6):1155-64. doi: 10.1016/j.neuron.2011.03.028.
10
Mechanism for analogous illusory motion perception in flies and humans.苍蝇和人类产生类似虚幻运动知觉的机制。
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23044-23053. doi: 10.1073/pnas.2002937117. Epub 2020 Aug 24.

引用本文的文献

2
Broken time-reversal symmetry in visual motion detection.视觉运动检测中时间反演对称性的破缺
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2410768122. doi: 10.1073/pnas.2410768122. Epub 2025 Mar 6.
5
Adaptation to visual sparsity enhances responses to isolated stimuli.对视觉稀疏性的适应增强了对孤立刺激的反应。
Curr Biol. 2024 Dec 16;34(24):5697-5713.e8. doi: 10.1016/j.cub.2024.10.053. Epub 2024 Nov 21.

本文引用的文献

1
ON and OFF pathways in Drosophila motion vision.果蝇运动视觉中的 ON 和 OFF 通路。
Nature. 2010 Nov 11;468(7321):300-4. doi: 10.1038/nature09545.
5
Fly motion vision.蝇类的运动视觉。
Annu Rev Neurosci. 2010;33:49-70. doi: 10.1146/annurev-neuro-060909-153155.
7
Feature detection and the hypercomplex property in insects.昆虫的特征检测和超复数特性。
Trends Neurosci. 2009 Jul;32(7):383-91. doi: 10.1016/j.tins.2009.03.004. Epub 2009 Jun 21.
10
Drosophila's view on insect vision.果蝇对昆虫视觉的看法。
Curr Biol. 2009 Jan 13;19(1):R36-47. doi: 10.1016/j.cub.2008.11.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验