Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
Neuron. 2011 Jun 23;70(6):1165-77. doi: 10.1016/j.neuron.2011.05.023.
Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt correlator (HRC), relates visual inputs to neural activity and behavioral responses to motion, but the circuits that implement this computation remain unknown. By using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, "reverse phi," that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection.
许多动物依赖于视觉运动检测来生存。运动信息是从视网膜上的时空强度模式中提取出来的,这是一种典型的神经计算。一个现象学模型,即 Hassenstein-Reichardt 相关器 (HRC),将视觉输入与神经活动和对运动的行为反应联系起来,但实现这种计算的电路仍然未知。通过使用细胞类型特异性基因沉默、最小运动刺激和在体钙成像,我们研究了两个关键的 HRC 输入。这两条通路对光暗移动边缘的反应更为敏感。我们证明,这些通路在 HRC 所基于的计算中执行重叠但互补的子集。实现这些操作的差分加权的数值模型显示了观察到的边缘偏好。有趣的是,这些通路的区别在于它们对一种刺激相关的敏感性,这种相关性对应于一种幻觉“反向 phi”,这种幻觉影响着许多物种。因此,这种计算架构可能被广泛用于实现运动检测中的边缘选择性。