Suppr超能文献

置换不变多项式神经网络方法拟合势能面。

Permutation invariant polynomial neural network approach to fitting potential energy surfaces.

机构信息

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

J Chem Phys. 2013 Aug 7;139(5):054112. doi: 10.1063/1.4817187.

Abstract

A simple, general, and rigorous scheme for adapting permutation symmetry in molecular systems is proposed and tested for fitting global potential energy surfaces using neural networks (NNs). The symmetry adaptation is realized by using low-order permutation invariant polynomials (PIPs) as inputs for the NNs. This so-called PIP-NN approach is applied to the H + H2 and Cl + H2 systems and the analytical potential energy surfaces for these two systems were accurately reproduced by PIP-NN. The accuracy of the NN potential energy surfaces was confirmed by quantum scattering calculations.

摘要

提出并测试了一种简单、通用且严格的分子体系中置换对称性适应方案,该方案使用神经网络(NN)拟合全局势能面。通过使用低阶置换不变多项式(PIP)作为 NN 的输入来实现对称性适应。该所谓的 PIP-NN 方法应用于 H + H2 和 Cl + H2 体系,并且通过 PIP-NN 准确地再现了这两个体系的分析势能面。NN 势能面的准确性通过量子散射计算得到了确认。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验