Suppr超能文献

使用原子神经网络的多原子反应的排列不变势能面

Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks.

作者信息

Kolb Brian, Zhao Bin, Li Jun, Jiang Bin, Guo Hua

机构信息

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States.

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

出版信息

J Chem Phys. 2016 Jun 14;144(22):224103. doi: 10.1063/1.4953560.

Abstract

The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H2 → H2 + H, H + H2O → H2 + OH, and H + CH4 → H2 + CH3. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

摘要

在H + H2 → H2 + H、H + H2O → H2 + OH和H + CH4 → H2 + CH3这三个体系中,对用于拟合反应势能面的贝赫勒-帕里内洛原子神经网络方法的适用性和准确性进行了严格检验。提出了一种实用的蒙特卡罗方法,以有效地选择以原子为中心的映射函数。势能面的准确性不仅通过拟合误差进行检验,还通过在动态重要区域的直接比较以及量子散射计算进行验证。我们的结果表明,即使涉及离解连续区,该方法在表示多维势能面时也既准确又高效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验