Suppr超能文献

使用闪烁体块和光断层成像技术测定三维剂量分布的初步研究。

Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.

机构信息

OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.

出版信息

Med Phys. 2013 Aug;40(8):082104. doi: 10.1118/1.4813898.

Abstract

PURPOSE

Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.

METHODS

A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.

RESULTS

Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.

CONCLUSIONS

It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.

摘要

目的

在远程治疗中的临床质量保证以及未来医学应用中实验辐射源的特性描述都需要能够有效测量水等效介质中生成的三维(3D)剂量分布的方法。当前基于电离室、二极管、热释光探测器、光致变色薄膜或聚合物凝胶的剂量计存在各种缺点:高质量的 3D 剂量确定要么非常复杂和昂贵,要么需要大量的精力和时间进行准备或读取。研究了基于闪烁体块与光学层析成像结合的新型探测器,因为它们有可能促进所需的具有成本效益、可运输且长期稳定的剂量测定系统的发展,该系统能够在短时间内以高空间分辨率确定 3D 剂量分布。

方法

基于塑料闪烁体块和四个数字相机建立了便携式探测器原型。在辐照过程中,闪烁体发出光,固定相机检测该光。然后通过最大似然期望最大化算法的光学层析成像重建光分布。重建结果近似于 3D 剂量分布。首先使用激光对原型进行了性能测试。使用临床和研究加速器提供的电离辐射(6 至 21MV 的韧致辐射、6 至 21MeV 的电子以及 68MeV 的质子)进行了辐照实验。

结果

激光实验表明,当前的成像特性与设计规格不同:光学系统的成像比例取决于位置,范围在 0.185mm/pixel 到 0.225mm/pixel 之间。然而,所开发的剂量测定方法已被证明可用于电子和质子束。产生 50mGy 或更高的辐射剂量使得 3D 剂量重建成为可能。考虑到成像特性,确定的剂量分布与参考测量值一致。闪烁体的一个固有缺点是由于猝灭效应,高阻止本领辐射的光输出非线性。它会影响剂量计测量的深度剂量曲线。对于单个布拉格峰分布,与参考电离室测量的 4.5 相比,这会导致峰值与平台比为 2.8。此外,临床韧致辐射束穿过闪烁体导致一个相机饱和,使得在这种情况下目前无法进行剂量重建。

结论

结果表明,质子或电子束产生的闪烁光分布可以在几分钟内通过剂量测定系统重建。质子辐照时出现的猝灭现象,以及成像比例的位置依赖性尚未精确确定,需要进一步的研究和修正。使用更大或无机闪烁体升级原型将增加可检测的质子和电子能量范围。所呈现的结果表明,使用闪烁体块和光学层析成像来确定 3D 剂量分布是一种很有前途的剂量测定方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验