Darne Chinmay D, Alsanea Fahed, Robertson Daniel G, Sahoo Narayan, Beddar Sam
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
Phys Med Biol. 2017 Jun 23;62(14):5652-5667. doi: 10.1088/1361-6560/aa780b.
Existing systems for proton beam dosimetry are limited in their ability to provide a complete, accurate, and detailed account of volumetric dose distribution. In this work, we describe the design and development of a portable, fast, and reusable liquid scintillator-based three-dimensional (3D) optical detection system for use in proton therapy. Our long-term goal is to use this system clinically for beam characterization, dosimetry, and quality assurance studies of discrete spot scanning proton beam systems. The system used a 20 × 20 × 20 cm liquid scintillator volume. Three mutually orthogonal cameras surrounding this volume captured scintillation photons emitted in response to the proton beams. The cameras exhibited a mean spatial resolution of 0.21 mm over the complete detection volume and a temporal resolution of 11 ms. The system is shown to be capable of capturing all 94 beam energies delivered by a synchrotron and performing rapid beam range measurements with a mean accuracy of 0.073 ± 0.030 mm over all energies. The range measurement uncertainty for doses less than 1 cGy was found to be ±0.355 mm, indicating high precision for low dose detection. Finally, we demonstrated that using multiple cameras allowed for the precise locations of the delivered beams to be tracked in 3D. We conclude that this detector is capable of real-time and accurate tracking of dynamic spot beam deliveries in 3D. The high-resolution light profiles it generates will be useful for future 3D construction of dose maps.
现有的质子束剂量测定系统在提供完整、准确和详细的体积剂量分布信息方面能力有限。在这项工作中,我们描述了一种用于质子治疗的便携式、快速且可重复使用的基于液体闪烁体的三维(3D)光学检测系统的设计与开发。我们的长期目标是在临床上使用该系统对离散点扫描质子束系统进行束流特性分析、剂量测定和质量保证研究。该系统使用了一个20×20×20厘米的液体闪烁体体积。围绕该体积的三个相互正交的相机捕获了响应质子束发射的闪烁光子。这些相机在整个检测体积上的平均空间分辨率为0.21毫米,时间分辨率为11毫秒。该系统能够捕获同步加速器输送的所有94种束流能量,并在所有能量下以平均精度0.073±0.030毫米进行快速束流射程测量。发现剂量小于1厘戈瑞时的射程测量不确定度为±0.355毫米,表明低剂量检测具有高精度。最后,我们证明使用多个相机可以在三维空间中跟踪所输送束流的精确位置。我们得出结论,该探测器能够实时、准确地跟踪动态点束的三维输送。它生成的高分辨率光轮廓将对未来剂量图的三维构建有用。