Interdisciplinary Nanoscience Center, ‡Department of Molecular Biology, §Department of Chemistry, and ⊥Centre for DNA Nanotechnology, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
ACS Nano. 2013 Sep 24;7(9):8098-104. doi: 10.1021/nn403386f. Epub 2013 Aug 19.
The ability to synthesize, characterize, and manipulate DNA forms the foundation of a range of advanced disciplines including genomics, molecular biology, and biomolecular engineering. In particular for the latter field, DNA has proven useful as a structural or functional component in nanoscale self-assembled structures, antisense therapeutics, microarray diagnostics, and biosensors. Such applications frequently require DNA to be modified and conjugated to other macromolecules, including proteins, polymers, or fatty acids, in order to equip the system with properties required for a particular application. However, conjugation of DNA to large molecular components using classical chemistries often suffers from suboptimal yields. Here, we report the use of terminal deoxynucleotidyl transferase (TdT) for direct enzymatic ligation of native DNA to nucleotide triphosphates coupled to proteins and other large macromolecules. We demonstrate facile synthesis routes for a range of NTP-activated macromolecules and subsequent ligation to the 3' hydroxyl group of oligodeoxynucleotides using TdT. The reaction is highly specific and proceeds rapidly and essentially to completion at micromolar concentrations. As a proof of principle, parallelly labeled oligonucleotides were used to produce nanopatterned DNA origami structures, demonstrating rapid and versatile incorporation of non-DNA components into DNA nanoarchitectures.
合成、表征和操纵 DNA 的能力为包括基因组学、分子生物学和生物分子工程在内的一系列先进学科奠定了基础。特别是对于后者,DNA 已被证明可作为纳米自组装结构、反义治疗、微阵列诊断和生物传感器等结构或功能组件发挥作用。这些应用通常需要对 DNA 进行修饰和与其他大分子(包括蛋白质、聚合物或脂肪酸)缀合,以便为特定应用配备所需的特性。然而,使用经典化学方法将 DNA 与大型分子成分缀合往往会导致产率不理想。在这里,我们报告了使用末端脱氧核苷酸转移酶(TdT)将天然 DNA 直接酶促连接到与蛋白质和其他大分子偶联的核苷酸三磷酸上。我们展示了一系列 NTP 激活的大分子的简便合成途径,以及使用 TdT 将其连接到寡脱氧核苷酸的 3' 羟基上。该反应具有高度特异性,在微摩尔浓度下快速且基本上完全进行。作为原理验证,使用平行标记的寡核苷酸来制备纳米图案化 DNA 折纸结构,证明了非 DNA 成分快速且多功能地掺入 DNA 纳米结构中。