Centre for Synthetic Biology and Innovation and Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK.
J Mol Biol. 2013 Nov 15;425(22):4161-6. doi: 10.1016/j.jmb.2013.07.036. Epub 2013 Aug 6.
Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties of pathway architecture can also be exploited by synthetic biologists to enable precise control of cellular physiology. Here, we characterised the response of a bacterial light-responsive, two-component system to oscillating signals of varying frequencies. We found that the system acted as a low-pass filter, able to respond to low-frequency oscillations and unable to respond to high-frequency oscillations. We then demonstrate that the low-pass filtering behavior can be exploited to enable precise control of gene expression using a strategy termed pulse width modulation (PWM). PWM is a common strategy used in electronics for information encoding that converts a series of digital input signals to an analog response. We further show how the PWM strategy extends the utility of bacterial optogenetic control, allowing the fine-tuning of expression levels, programming of temporal dynamics, and control of microbial physiology via manipulation of a metabolic enzyme.
细胞通过信号通路传递和接收信息。许多研究表明,信息编码在这些通路的时间动态中,并强调了通路结构如何影响信号在时间和空间中的传播。合成生物学家还可以利用通路结构的功能特性来实现对细胞生理学的精确控制。在这里,我们描述了细菌光响应的双组分系统对不同频率的振荡信号的响应。我们发现该系统充当低通滤波器,能够响应低频振荡,而不能响应高频振荡。然后,我们证明可以利用这种低通滤波行为来通过称为脉冲宽度调制(PWM)的策略来实现对基因表达的精确控制。PWM 是电子学中用于信息编码的常用策略,它将一系列数字输入信号转换为模拟响应。我们进一步展示了 PWM 策略如何扩展细菌光遗传学控制的实用性,允许通过代谢酶的操纵来微调表达水平、编程时间动态以及控制微生物生理学。