Kumar Sant, Khammash Mustafa
Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland.
Front Bioeng Biotechnol. 2022 Jun 8;10:918917. doi: 10.3389/fbioe.2022.918917. eCollection 2022.
Harnessing the potential of optogenetics in biology requires methodologies from different disciplines ranging from biology, to mechatronics engineering, to control engineering. Light stimulation of a synthetic optogenetic construct in a given biological species can only be achieved a suitable light stimulation platform. Emerging optogenetic applications entail a consistent, reproducible, and regulated delivery of light adapted to the application requirement. In this review, we explore the evolution of light-induction hardware-software platforms from simple illumination set-ups to sophisticated microscopy, microtiter plate and bioreactor designs, and discuss their respective advantages and disadvantages. Here, we examine design approaches followed in performing optogenetic experiments spanning different cell types and culture volumes, with induction capabilities ranging from single cell stimulation to entire cell culture illumination. The development of automated measurement and stimulation schemes on these platforms has enabled researchers to implement various feedback control strategies to achieve computer-controlled living systems-a theme we briefly discuss in the last part of this review.
要在生物学中发挥光遗传学的潜力,需要运用从生物学、机电一体化工程到控制工程等不同学科的方法。在特定生物物种中对合成光遗传学构建体进行光刺激,只能通过合适的光刺激平台来实现。新兴的光遗传学应用需要根据应用需求,以一致、可重复且受调控的方式进行光的传递。在本综述中,我们探讨了光诱导硬件 - 软件平台从简单照明设置到复杂显微镜、微量滴定板和生物反应器设计的演变,并讨论了它们各自的优缺点。在这里,我们研究了在进行跨越不同细胞类型和培养体积的光遗传学实验时所采用的设计方法,其诱导能力范围从单细胞刺激到整个细胞培养物照明。这些平台上自动化测量和刺激方案的发展,使研究人员能够实施各种反馈控制策略,以实现计算机控制的生命系统——这是我们在本综述最后部分简要讨论的一个主题。