Department of Plant and Microbial Biology, University of California, Berkeley, USA.
PLoS Genet. 2013;9(8):e1003669. doi: 10.1371/journal.pgen.1003669. Epub 2013 Aug 1.
Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power of population-genetic analyses for the rapid identification of genes contributing to complex traits in microbial species.
了解基因组如何编码复杂的细胞和生物行为已成为现代遗传学的突出挑战。与经典的筛选方法不同,对野生种群中自然发生的遗传变异进行分析,可以利用中通量实验设计快速、全基因组规模地对基因型到表型进行映射。在这里,我们描述了首次全基因组关联研究(GWAS)的结果,该研究用于鉴定丝状真菌 Neurospora crassa 中性状变异的新基因座,利用了该真菌的野生分离株。我们对一个野生路易斯安那州菌株群体的 100 万个遗传基因座进行了基因分型,并利用这些基因型来绘制微生物通讯的遗传决定因素图谱。在 N. crassa 中,萌发的无性孢子(营养体)感知到其他营养体的存在,以协调的方式向它们生长,并融合。我们评估了每个菌株的营养体对化学感应、趋化性和细胞融合的能力,并对这些性状进行了 GWAS 分析。这项分析确定了一个基因,NCU04379(cse-1,编码神经元钙传感器的同源物),其遗传与营养体通讯效率密切相关。cse-1 的缺失显著削弱了营养体的通讯和融合,而 CSE1 的两个编码预测相互作用伙伴的基因也对通讯性状是必需的。此外,我们在我们的关联结果中挖掘了具有在营养体通讯中起潜在作用的信号和分泌基因,验证了另外六个以前未知的分子参与者,包括一个分泌蛋白酶和另外两个基因,其缺失赋予了营养体通讯和多营养体融合的新表型。我们的结果确立了蛋白质分泌作为 N. crassa 营养体通讯的关键,并揭示了该真菌中通讯分子的调控机制。我们的研究表明,群体遗传分析在快速鉴定微生物物种复杂性状的基因方面具有强大的作用。