Suppr超能文献

利用全基因组比较来识别那些存在可准确预测临床重要表型的序列。

Using complete genome comparisons to identify sequences whose presence accurately predicts clinically important phenotypes.

机构信息

Bellingham Research Institute, Bellingham, Washington, United States of America.

出版信息

PLoS One. 2013 Jul 23;8(7):e68901. doi: 10.1371/journal.pone.0068901. Print 2013.

Abstract

In clinical settings it is often important to know not just the identity of a microorganism, but also the danger posed by that particular strain. For instance, Escherichia coli can range from being a harmless commensal to being a very dangerous enterohemorrhagic (EHEC) strain. Determining pathogenic phenotypes can be both time consuming and expensive. Here we propose a simple, rapid, and inexpensive method of predicting pathogenic phenotypes on the basis of the presence or absence of short homologous DNA segments in an isolate. Our method compares completely sequenced genomes without the necessity of genome alignments in order to identify the presence or absence of the segments to produce an automatic alignment of the binary string that describes each genome. Analysis of the segment alignment allows identification of those segments whose presence strongly predicts a phenotype. Clinical application of the method requires nothing more that PCR amplification of each of the set of predictive segments. Here we apply the method to identifying EHEC strains of E. coli and to distinguishing E. coli from Shigella. We show in silico that with as few as 8 predictive sequences, if even three of those predictive sequences are amplified the probability of being EHEC or Shigella is >0.99. The method is thus very robust to the occasional amplification failure for spurious reasons. Experimentally, we apply the method to screening a set of 98 isolates to distinguishing E. coli from Shigella, and EHEC from non-EHEC E. coli strains and show that all isolates are correctly identified.

摘要

在临床环境中,不仅要了解微生物的身份,还要了解该特定菌株的危险程度。例如,大肠杆菌可以从无害共生菌变为非常危险的肠出血性(EHEC)菌株。确定致病表型既费时又昂贵。在这里,我们提出了一种简单、快速且廉价的方法,根据分离物中短同源 DNA 片段的存在与否来预测致病表型。我们的方法比较了完全测序的基因组,而无需进行基因组比对,以识别片段的存在或不存在,从而产生描述每个基因组的二进制字符串的自动比对。对片段比对的分析可以识别出那些存在强烈预测表型的片段。该方法的临床应用只需要对预测片段的每一组进行 PCR 扩增。在这里,我们将该方法应用于识别大肠杆菌中的 EHEC 菌株,并区分大肠杆菌和志贺氏菌。我们在计算机模拟中表明,如果只有 8 个预测序列,即使其中 3 个预测序列被扩增,那么是 EHEC 或志贺氏菌的概率>0.99。因此,该方法对因偶然原因而扩增失败具有很强的鲁棒性。实验上,我们将该方法应用于筛选一组 98 个分离物,以区分大肠杆菌和志贺氏菌,以及 EHEC 和非 EHEC 大肠杆菌菌株,并表明所有分离物都被正确识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef0/3720857/66bd8d03243a/pone.0068901.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验