Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
J Phys Condens Matter. 2013 Sep 11;25(36):363201. doi: 10.1088/0953-8984/25/36/363201. Epub 2013 Aug 16.
Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.
光刻处理和薄膜生长技术不断进步,使得现在有可能制造出由亚 1 微米元件阵列组成的、具有高清晰度的图案铁电材料。通过利用各元件之间的相互作用来创造新的功能,可以实现这些阵列的一些最引人入胜的行为。这些人工铁电系统的特性与组成它们的组件的特性截然不同,由于相互作用的元件的集体动力学而产生新的涌现行为,这些元件以特定的设计排列并可以通过施加磁场或电场来激活。我们首先关注由偶极耦合纳米磁体组成的人工自旋系统,特别是综述人工自旋冰领域,该领域展示了由于纳米磁体特定排列所固有的挫折感而产生的广泛迷人现象,包括新兴的磁单极子、有序宏观自旋的畴以及新的雪崩行为。我们概述了如何利用去磁协议作为有效的热退火,以试图达到基态,评论了在热激活系统中出现的现象,并讨论了使用外加磁场选择性地生成特定配置的策略。然后,我们从缓慢的场和温度驱动动力学转移到高频现象,讨论了从由图案化磁性元件组成的磁振子晶体中激发的自旋波。在高频下,这些阵列在包括磁性逻辑、线性和非线性微波光学以及快速、高效切换的潜在应用中进行了研究,我们考虑了利用人工自旋冰创建可调谐磁振子晶体的可能性。最后,我们讨论了如何结合功能铁电复合材料来实现磁电效应。具体来说,我们讨论了人工多铁性体(或多铁性复合材料),它们为涉及磁场的电场控制或用于微波和太赫兹信号处理的高频集成电路设计的电场和磁场响应设备的新应用提供了前景。最后,我们评论了通过具有相互作用的铁电元件的纳米结构工程如何实现增强的功能,为新型自旋电子器件创造了机会,例如利用磁电荷的输运、热激活元件和可重新编程的纳米磁体系统。