Trippa Lorenzo, Müller Peter, Johnson Wesley
Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, U.S.A. ,
Biometrika. 2011 Mar;98(1):17-34. doi: 10.1093/biomet/asq072. Epub 2011 Feb 2.
We introduce a novel stochastic process that we term the multivariate beta process. The process is defined for modelling-dependent random probabilities and has beta marginal distributions. We use this process to define a probability model for a family of unknown distributions indexed by covariates. The marginal model for each distribution is a Polya tree prior. An important feature of the proposed prior is the easy centring of the nonparametric model around any parametric regression model. We use the model to implement nonparametric inference for survival distributions. The nonparametric model that we introduce can be adopted to extend the support of prior distributions for parametric regression models.
我们引入了一种新颖的随机过程,我们将其称为多元贝塔过程。该过程是为对依赖模型的随机概率进行建模而定义的,并且具有贝塔边缘分布。我们使用这个过程为一族由协变量索引的未知分布定义一个概率模型。每个分布的边缘模型是一个波利亚树先验。所提出先验的一个重要特征是,非参数模型可以很容易地以任何参数回归模型为中心。我们使用该模型对生存分布进行非参数推断。我们引入的非参数模型可用于扩展参数回归模型先验分布的支持范围。