Suppr超能文献

潜在嵌套非参数先验(附讨论)

Latent Nested Nonparametric Priors (with Discussion).

作者信息

Camerlenghi Federico, Dunson David B, Lijoi Antonio, Prünster Igor, Rodríguez Abel

机构信息

Department of Economics, Management and Statistics, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy.

Also affiliated to Collegio Carlo Alberto, Torino and BIDSA, Bocconi University, Milano, Italy.

出版信息

Bayesian Anal. 2019 Dec;14(4):1303-1356. doi: 10.1214/19-BA1169. Epub 2019 Jun 27.

Abstract

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalizing to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop a Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by-product. The results and their inferential implications are showcased on synthetic and real data.

摘要

离散随机结构是贝叶斯非参数中的重要工具,由此产生的模型已被证明在密度估计、聚类、主题建模和预测等方面有效。在本文中,我们考虑嵌套过程并研究它们所诱导的依赖结构。依赖程度介于对应于完全可交换性的同质性和对应于样本间(无条件)独立性的最大异质性之间。当在观察或潜在层面的样本间存在平局时,流行的嵌套狄利克雷过程会退化为完全可交换的情况。为了克服嵌套一般离散随机测度所固有的这一缺点,我们引入了一类新颖的潜在嵌套过程。这些过程是通过添加共同的和特定组的完全随机测度,然后进行归一化以产生相关的随机概率测度而得到的。我们给出了由潜在嵌套过程诱导的划分分布的结果,并开发了用于贝叶斯推断的马尔可夫链蒙特卡罗采样器。作为副产品,我们得到了一个用于检验组间分布同质性的检验。结果及其推断意义在合成数据和真实数据上得到了展示。

相似文献

1
Latent Nested Nonparametric Priors (with Discussion).潜在嵌套非参数先验(附讨论)
Bayesian Anal. 2019 Dec;14(4):1303-1356. doi: 10.1214/19-BA1169. Epub 2019 Jun 27.
2
Generalized species sampling priors with latent Beta reinforcements.具有潜在贝塔增强的广义物种抽样先验。
J Am Stat Assoc. 2014 Dec 1;109(508):1466-1480. doi: 10.1080/01621459.2014.950735.
10
Bayesian nonparametric inference on stochastic ordering.关于随机序的贝叶斯非参数推断。
Biometrika. 2008 Dec;95(4):859-874. doi: 10.1093/biomet/asn043. Epub 2008 Nov 3.

引用本文的文献

2
Enriched Pitman-Yor processes.富集皮特曼 - 约尔过程
Scand Stat Theory Appl. 2025 Jun;52(2):631-657. doi: 10.1111/sjos.12765. Epub 2025 Jan 19.
6
Bayesian cluster analysis.贝叶斯聚类分析。
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220149. doi: 10.1098/rsta.2022.0149. Epub 2023 Mar 27.

本文引用的文献

1
Random Partition Distribution Indexed by Pairwise Information.基于成对信息索引的随机划分分布指数
J Am Stat Assoc. 2017;112(518):721-732. doi: 10.1080/01621459.2016.1165103. Epub 2017 Apr 12.
6
Latent Stick-Breaking Processes.潜在折断棒过程
J Am Stat Assoc. 2010 Apr 1;105(490):647-659. doi: 10.1198/jasa.2010.tm08241. Epub 2012 Jan 1.
7
Nonparametric Bayes Classification and Hypothesis Testing on Manifolds.流形上的非参数贝叶斯分类与假设检验
J Multivar Anal. 2012 Oct 1;111:1-19. doi: 10.1016/j.jmva.2012.02.020. Epub 2012 Apr 17.
8
A Product Partition Model With Regression on Covariates.一种带有协变量回归的产品划分模型。
J Comput Graph Stat. 2011 Mar 1;20(1):260-278. doi: 10.1198/jcgs.2011.09066.
9
Bayesian nonparametric nonproportional hazards survival modeling.贝叶斯非参数非比例风险生存建模
Biometrics. 2009 Sep;65(3):762-71. doi: 10.1111/j.1541-0420.2008.01166.x. Epub 2009 Feb 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验