Hanson Timothy E, Jara Alejandro, Zhao Luping
Department of Statistics, University of South Carolina, Columbia, SC 29208 (
Bayesian Anal. 2011;6(4):1-48.
Incorporating temporal and spatial variation could potentially enhance information gathered from survival data. This paper proposes a Bayesian semiparametric model for capturing spatio-temporal heterogeneity within the proportional hazards framework. The spatial correlation is introduced in the form of county-level frailties. The temporal effect is introduced by considering the stratification of the proportional hazards model, where the time-dependent hazards are indirectly modeled using a probability model for related probability distributions. With this aim, an autoregressive dependent tailfree process is introduced. The full Kullback-Leibler support of the proposed process is provided. The approach is illustrated using simulated and data from the Surveillance Epidemiology and End Results database of the National Cancer Institute on patients in Iowa diagnosed with breast cancer.
纳入时间和空间变化可能会增强从生存数据中收集到的信息。本文提出了一种贝叶斯半参数模型,用于在比例风险框架内捕捉时空异质性。空间相关性以县级脆弱性的形式引入。通过考虑比例风险模型的分层来引入时间效应,其中时间依赖风险通过相关概率分布的概率模型进行间接建模。为此,引入了一个自回归相依尾自由过程。给出了所提出过程的完整库尔贝克-莱布勒支撑。使用模拟数据以及美国国家癌症研究所监测、流行病学和最终结果数据库中关于爱荷华州乳腺癌患者的数据对该方法进行了说明。