Suppr超能文献

多模块木质纤维素降解酶中的糖基化连接子动态结合纤维素。

Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose.

机构信息

Biosciences Center and National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

出版信息

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14646-51. doi: 10.1073/pnas.1309106110. Epub 2013 Aug 19.

Abstract

Plant cell-wall polysaccharides represent a vast source of food in nature. To depolymerize polysaccharides to soluble sugars, many organisms use multifunctional enzyme mixtures consisting of glycoside hydrolases, lytic polysaccharide mono-oxygenases, polysaccharide lyases, and carbohydrate esterases, as well as accessory, redox-active enzymes for lignin depolymerization. Many of these enzymes that degrade lignocellulose are multimodular with carbohydrate-binding modules (CBMs) and catalytic domains connected by flexible, glycosylated linkers. These linkers have long been thought to simply serve as a tether between structured domains or to act in an inchworm-like fashion during catalytic action. To examine linker function, we performed molecular dynamics (MD) simulations of the Trichoderma reesei Family 6 and Family 7 cellobiohydrolases (TrCel6A and TrCel7A, respectively) bound to cellulose. During these simulations, the glycosylated linkers bind directly to cellulose, suggesting a previously unknown role in enzyme action. The prediction from the MD simulations was examined experimentally by measuring the binding affinity of the Cel7A CBM and the natively glycosylated Cel7A CBM-linker. On crystalline cellulose, the glycosylated linker enhances the binding affinity over the CBM alone by an order of magnitude. The MD simulations before and after binding of the linker also suggest that the bound linker may affect enzyme action due to significant damping in the enzyme fluctuations. Together, these results suggest that glycosylated linkers in carbohydrate-active enzymes, which are intrinsically disordered proteins in solution, aid in dynamic binding during the enzymatic deconstruction of plant cell walls.

摘要

植物细胞壁多糖是自然界中一种巨大的食物来源。为了将多糖解聚成可溶性糖,许多生物利用多功能酶混合物,其中包括糖苷水解酶、裂解多糖单加氧酶、多糖裂解酶和碳水化合物酯酶,以及用于木质素解聚的辅助氧化还原活性酶。许多降解木质纤维素的酶都是多模块的,带有碳水化合物结合模块 (CBMs) 和催化结构域,通过柔性的糖基化连接子连接。这些连接子长期以来被认为只是作为结构化结构域之间的系绳,或者在催化作用中以类似尺蠖的方式发挥作用。为了研究连接子的功能,我们对里氏木霉家族 6 和家族 7 纤维二糖水解酶(TrCel6A 和 TrCel7A)与纤维素结合进行了分子动力学(MD)模拟。在这些模拟中,糖基化连接子直接与纤维素结合,这表明其在酶作用中具有以前未知的功能。MD 模拟的预测通过测量 Cel7A CBM 和天然糖基化 Cel7A CBM-连接子的结合亲和力来实验检验。在结晶纤维素上,糖基化连接子使结合亲和力比单独的 CBM 增强了一个数量级。结合连接子前后的 MD 模拟还表明,由于酶波动的显著阻尼,结合的连接子可能会影响酶的作用。总之,这些结果表明,在碳水化合物活性酶中,糖基化连接子作为溶液中固有无序的蛋白质,有助于在植物细胞壁的酶解过程中的动态结合。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验