EA 3544 "Pharmacologie des troubles anxio-dépressifs et Neurogenèse", Faculté de Pharmacie, Université Paris-Sud Chatenay-Malabry, France.
Front Pharmacol. 2013 Aug 8;4:98. doi: 10.3389/fphar.2013.00098. eCollection 2013.
Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM) already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 1990s, and since then in conscious wild-type or knock-out mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines) and reuptake by selective transporters [e.g., serotonin transporter for serotonin 5-hydroxytryptamine (5-HT)]. Complementary to electrophysiology, this technique reflects pre-synaptic monoamines release and intrasynaptic events corresponding to ≈80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limits the antidepressant-like activity of SSRIs. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in humans, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and heteroreceptors and ICM helped to clarify the role of the pre-synaptic component, i.e., by measuring extracellular levels of neurotransmitters in serotonergic nerve terminal regions and raphe nuclei. Finally, we will summarize main advantages of using ICM in mice through recent examples obtained in knock-outs (drug infusion through the ICM probe allows the search of a correlation between changes in extracellular neurotransmitter levels and antidepressant-like activity) or alternatives (infusion of a small-interfering RNA suppressing receptor functions in the mouse brain). We will also focus this review on post-synaptic components such as brain-derived neurotrophic factor in adult hippocampus that plays a crucial role in the neurogenic and anxiolytic/antidepressant-like activity of chronic SSRI treatment. Limitations of ICM will also be considered.
为什么抗抑郁药在疗效上存在差异目前尚不清楚。尽管选择性 5-羟色胺再摄取抑制剂(SSRIs)在抑郁症的治疗中处于领先地位,但人们对其治疗作用涉及的确切神经生物学机制仍知之甚少。更好地了解单胺能系统、突触前和突触后伙伴、脑神经元回路和涉及的区域之间的分子相互作用,可能有助于克服当前治疗方法的局限性,并确定新的治疗靶点。脑室内体内微透析(ICM)早在 20 世纪 90 年代初就在麻醉大鼠中提供了关于抗抑郁药脑作用机制的重要信息,此后在清醒的野生型或敲除小鼠中也提供了重要信息。ICM 的原理基于神经递质(例如单胺)释放与选择性转运体(例如 5-羟色胺转运体 5-羟色胺)再摄取之间的平衡。该技术与电生理学相辅相成,反映了突触前单胺类物质的释放和对应于整个脑组织含量的 80%左右的细胞内事件。5-羟色胺能自身受体的抑制作用表明它们限制了树突和神经末梢 5-羟色胺的释放。有人提出,5-HT1A 和 5-HT1B 受体亚型的激活限制了 SSRIs 的抗抑郁样作用。这一假设部分基于在未受应激的啮齿动物中进行的 ICM 实验获得的结果。本综述将首先回顾在小鼠中进行的 ICM 的原理和方法。将强调开发能够显示出类似于人类焦虑和抑郁样行为、神经化学和大脑形态表型的动物模型的迫切需要。最近已经产生了遗传小鼠模型,用于独立操纵 5-HT1A 自身和异源受体,而 ICM 有助于阐明突触前成分的作用,即通过测量 5-羟色胺能神经末梢区域和中缝核的神经递质的细胞外水平。最后,我们将通过最近在敲除小鼠中获得的示例(通过 ICM 探针进行药物输注允许搜索细胞外神经递质水平变化与抗抑郁样活性之间的相关性)或替代方法(在小鼠脑中输注小干扰 RNA 以抑制受体功能)来总结使用 ICM 的主要优点。我们还将重点关注成年海马体中的脑源性神经营养因子等突触后成分,它在慢性 SSRI 治疗的神经发生和抗焦虑/抗抑郁样活性中起着至关重要的作用。还将考虑 ICM 的局限性。