Suppr超能文献

乳腺癌HER2/neu自动定量评估中的可重复性

Reproducibility in the automated quantitative assessment of HER2/neu for breast cancer.

作者信息

Keay Tyler, Conway Catherine M, O'Flaherty Neil, Hewitt Stephen M, Shea Katherine, Gavrielides Marios A

机构信息

Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.

出版信息

J Pathol Inform. 2013 Jul 31;4:19. doi: 10.4103/2153-3539.115879. eCollection 2013.

Abstract

BACKGROUND

With the emerging role of digital imaging in pathology and the application of automated image-based algorithms to a number of quantitative tasks, there is a need to examine factors that may affect the reproducibility of results. These factors include the imaging properties of whole slide imaging (WSI) systems and their effect on the performance of quantitative tools. This manuscript examines inter-scanner and inter-algorithm variability in the assessment of the commonly used HER2/neu tissue-based biomarker for breast cancer with emphasis on the effect of algorithm training.

MATERIALS AND METHODS

A total of 241 regions of interest from 64 breast cancer tissue glass slides were scanned using three different whole-slide images and were analyzed using two different automated image analysis algorithms, one with preset parameters and another incorporating a procedure for objective parameter optimization. Ground truth from a panel of seven pathologists was available from a previous study. Agreement analysis was used to compare the resulting HER2/neu scores.

RESULTS

The results of our study showed that inter-scanner agreement in the assessment of HER2/neu for breast cancer in selected fields of view when analyzed with any of the two algorithms examined in this study was equal or better than the inter-observer agreement previously reported on the same set of data. Results also showed that discrepancies observed between algorithm results on data from different scanners were significantly reduced when the alternative algorithm that incorporated an objective re-training procedure was used, compared to the commercial algorithm with preset parameters.

CONCLUSION

Our study supports the use of objective procedures for algorithm training to account for differences in image properties between WSI systems.

摘要

背景

随着数字成像在病理学中的作用不断显现,以及基于图像的自动化算法在许多定量任务中的应用,有必要研究可能影响结果可重复性的因素。这些因素包括全切片成像(WSI)系统的成像特性及其对定量工具性能的影响。本文研究了在评估乳腺癌常用的基于HER2/neu组织的生物标志物时,不同扫描仪和不同算法之间的变异性,重点关注算法训练的影响。

材料与方法

使用三种不同的全切片图像扫描仪对64张乳腺癌组织玻璃切片中的总共241个感兴趣区域进行扫描,并使用两种不同的自动化图像分析算法进行分析,一种算法具有预设参数,另一种算法包含客观参数优化程序。先前一项研究提供了由七名病理学家组成的专家组给出的真实结果。采用一致性分析来比较所得的HER2/neu评分。

结果

我们的研究结果表明,在本研究中使用的两种算法中的任何一种对选定视野中的乳腺癌HER2/neu进行评估时,扫描仪间的一致性等于或优于先前对同一组数据报道的观察者间一致性。结果还表明,与具有预设参数的商业算法相比,当使用包含客观重新训练程序的替代算法时,不同扫描仪数据的算法结果之间观察到的差异显著减少。

结论

我们的研究支持使用客观程序进行算法训练,以考虑WSI系统之间图像特性的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dc4/3746414/6fcd87410262/JPI-4-19-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验