Suppr超能文献

通过有丝分裂算法对黑素细胞病变进行计算机辅助评估。

Computer-Aided Assessment of Melanocytic Lesions by Means of a Mitosis Algorithm.

作者信息

Sturm Bart, Creytens David, Smits Jan, Ooms Ariadne H A G, Eijken Erik, Kurpershoek Eline, Küsters-Vandevelde Heidi V N, Wauters Carla, Blokx Willeke A M, van der Laak Jeroen A W M

机构信息

Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.

Pathan B.V., 3045 PM Rotterdam, The Netherlands.

出版信息

Diagnostics (Basel). 2022 Feb 8;12(2):436. doi: 10.3390/diagnostics12020436.

Abstract

An increasing number of pathology laboratories are now fully digitised, using whole slide imaging (WSI) for routine diagnostics. WSI paves the road to use artificial intelligence (AI) that will play an increasing role in computer-aided diagnosis (CAD). In melanocytic skin lesions, the presence of a dermal mitosis may be an important clue for an intermediate or a malignant lesion and may indicate worse prognosis. In this study a mitosis algorithm primarily developed for breast carcinoma is applied to melanocytic skin lesions. This study aimed to assess whether the algorithm could be used in diagnosing melanocytic lesions, and to study the added value in diagnosing melanocytic lesions in a practical setting. WSI's of a set of hematoxylin and eosin (H&E) stained slides of 99 melanocytic lesions (35 nevi, 4 intermediate melanocytic lesions, and 60 malignant melanomas, including 10 nevoid melanomas), for which a consensus diagnosis was reached by three academic pathologists, were subjected to a mitosis algorithm based on AI. Two academic and six general pathologists specialized in dermatopathology examined the WSI cases two times, first without mitosis annotations and after a washout period of at least 2 months with mitosis annotations based on the algorithm. The algorithm indicated true mitosis in lesional cells, i.e., melanocytes, and non-lesional cells, i.e., mainly keratinocytes and inflammatory cells. A high number of false positive mitosis was indicated as well, comprising melanin pigment, sebaceous glands nuclei, and spindle cell nuclei such as stromal cells and neuroid differentiated melanocytes. All but one pathologist reported more often a dermal mitosis with the mitosis algorithm, which on a regular basis, was incorrectly attributed to mitoses from mainly inflammatory cells. The overall concordance of the pathologists with the consensus diagnosis for all cases excluding nevoid melanoma ( = 89) appeared to be comparable with and without the use of AI (89% vs. 90%). However, the concordance increased by using AI in nevoid melanoma cases ( = 10) (75% vs. 68%). This study showed that in general cases, pathologists perform similarly with the aid of a mitosis algorithm developed primarily for breast cancer. In nevoid melanoma cases, pathologists perform better with the algorithm. From this study, it can be learned that pathologists need to be aware of potential pitfalls using CAD on H&E slides, e.g., misinterpreting dermal mitoses in non-melanotic cells.

摘要

越来越多的病理实验室现在已完全数字化,在常规诊断中使用全切片成像(WSI)。WSI为人工智能(AI)的应用铺平了道路,而人工智能在计算机辅助诊断(CAD)中将发挥越来越重要的作用。在黑素细胞性皮肤病变中,真皮有丝分裂的存在可能是中间性或恶性病变的重要线索,并且可能预示着更差的预后。在本研究中,一种主要为乳腺癌开发的有丝分裂算法被应用于黑素细胞性皮肤病变。本研究旨在评估该算法是否可用于诊断黑素细胞性病变,并研究在实际应用中诊断黑素细胞性病变的附加价值。一组由三位学术病理学家达成共识诊断的99例黑素细胞性病变(35例痣、4例中间性黑素细胞性病变和60例恶性黑色素瘤,包括10例痣样黑色素瘤)的苏木精和伊红(H&E)染色切片的WSI被应用基于AI的有丝分裂算法。两位学术病理学家和六位专门从事皮肤病理学的普通病理学家对WSI病例进行了两次检查,第一次没有有丝分裂注释,在至少2个月的洗脱期后,根据算法进行有丝分裂注释。该算法显示病变细胞即黑素细胞以及非病变细胞即主要是角质形成细胞和炎症细胞中有真正的有丝分裂。也显示出大量的假阳性有丝分裂,包括黑色素、皮脂腺细胞核以及梭形细胞核如基质细胞和神经样分化的黑素细胞。除一名病理学家外,所有病理学家报告在使用有丝分裂算法时更常出现真皮有丝分裂,该算法经常将其错误地归因于主要来自炎症细胞的有丝分裂。对于所有排除痣样黑色素瘤(n = 89)的病例,病理学家与共识诊断的总体一致性在使用和不使用AI时似乎相当(89%对90%)。然而,在痣样黑色素瘤病例(n = 10)中使用AI时一致性有所提高(75%对68%)。本研究表明,在一般病例中,病理学家在主要为乳腺癌开发的有丝分裂算法的辅助下表现相似。在痣样黑色素瘤病例中,病理学家使用该算法表现更好。从本研究中可以了解到,病理学家需要意识到在H&E切片上使用CAD时的潜在陷阱,例如将非黑素细胞中的真皮有丝分裂误判。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e306/8871065/fc8400947874/diagnostics-12-00436-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验