Suppr超能文献

HIV-1 Rev富含精氨酸的RNA结合基序本质上是无序的,在与RRE结合时会折叠。

The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding.

作者信息

Casu Fabio, Duggan Brendan M, Hennig Mirko

机构信息

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Biophys J. 2013 Aug 20;105(4):1004-17. doi: 10.1016/j.bpj.2013.07.022.

Abstract

Arginine-rich motifs (ARMs) capable of binding diverse RNA structures play critical roles in transcription, translation, RNA trafficking, and RNA packaging. The regulatory HIV-1 protein Rev is essential for viral replication and belongs to the ARM family of RNA-binding proteins. During the early stages of the HIV-1 life cycle, incompletely spliced and full-length viral mRNAs are very inefficiently recognized by the splicing machinery of the host cell and are subject to degradation in the cell nucleus. These transcripts harbor the Rev Response Element (RRE), which orchestrates the interaction with the Rev ARM and the successive Rev-dependent mRNA export pathway. Based on established criteria for predicting intrinsic disorder, such as hydropathy, combined with significant net charge, the very basic primary sequences of ARMs are expected to adopt coil-like structures. Thus, we initiated this study to investigate the conformational changes of the Rev ARM associated with RNA binding. We used multidimensional NMR and circular dichroism spectroscopy to monitor the observed structural transitions, and described the conformational landscapes using statistical ensemble and molecular-dynamics simulations. The combined spectroscopic and simulated results imply that the Rev ARM is intrinsically disordered not only as an isolated peptide but also when it is embedded into an oligomerization-deficient Rev mutant. RRE recognition triggers a crucial coil-to-helix transition employing an induced-fit mechanism.

摘要

能够结合多种RNA结构的富含精氨酸基序(ARMs)在转录、翻译、RNA运输和RNA包装中发挥着关键作用。调控性HIV-1蛋白Rev对病毒复制至关重要,属于RNA结合蛋白的ARM家族。在HIV-1生命周期的早期阶段,不完全剪接的全长病毒mRNA被宿主细胞的剪接机制低效识别,并在细胞核中被降解。这些转录本含有Rev反应元件(RRE),它协调与Rev ARM的相互作用以及随后依赖Rev的mRNA输出途径。基于预测内在无序的既定标准,如亲水性以及显著的净电荷,ARMs非常碱性的一级序列预计会形成类似线圈的结构。因此,我们启动了这项研究,以探究与RNA结合相关的Rev ARM的构象变化。我们使用多维核磁共振和圆二色光谱来监测观察到的结构转变,并使用统计系综和分子动力学模拟来描述构象景观。光谱和模拟结果相结合表明,Rev ARM不仅作为一个孤立的肽是内在无序的,而且当它嵌入到一个缺乏寡聚化的Rev突变体中时也是如此。RRE识别通过诱导契合机制触发关键的线圈到螺旋的转变。

相似文献

1
The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding.
Biophys J. 2013 Aug 20;105(4):1004-17. doi: 10.1016/j.bpj.2013.07.022.
3
Arginine side-chain dynamics in the HIV-1 rev-RRE complex.
J Mol Biol. 2000 Nov 3;303(4):515-29. doi: 10.1006/jmbi.2000.4143.
4
Diverse mutants of HIV RRE IIB recognize wild-type Rev ARM or Rev ARM R35G-N40V.
J Mol Recognit. 2015 Dec;28(12):710-21. doi: 10.1002/jmr.2485. Epub 2015 Jun 30.
7
Structure of an RNA Aptamer that Can Inhibit HIV-1 by Blocking Rev-Cognate RNA (RRE) Binding and Rev-Rev Association.
Structure. 2018 Sep 4;26(9):1187-1195.e4. doi: 10.1016/j.str.2018.06.001. Epub 2018 Jul 12.
10
Altered-specificity mutants of the HIV Rev arginine-rich motif-RRE IIB interaction.
J Mol Recognit. 2020 Jun;33(6):e2833. doi: 10.1002/jmr.2833. Epub 2020 Jan 10.

引用本文的文献

2
Ghost authors revealed: The structure and function of human N -methyladenosine RNA methyltransferases.
Wiley Interdiscip Rev RNA. 2023 Sep 6:e1810. doi: 10.1002/wrna.1810.
3
Vital for Viruses: Intrinsically Disordered Proteins.
J Mol Biol. 2023 Jun 1;435(11):167860. doi: 10.1016/j.jmb.2022.167860. Epub 2023 Jun 16.
4
Tuning Rex rules HTLV-1 pathogenesis.
Front Immunol. 2022 Sep 16;13:959962. doi: 10.3389/fimmu.2022.959962. eCollection 2022.
5
Binding stoichiometry and structural model of the HIV-1 Rev/importin β complex.
Life Sci Alliance. 2022 Aug 22;5(10). doi: 10.26508/lsa.202201431. Print 2022 Oct.
7
Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides.
Biophys J. 2021 Nov 16;120(22):5060-5073. doi: 10.1016/j.bpj.2021.10.007. Epub 2021 Oct 26.
8
The bridge helix of Cas12a imparts selectivity in cis-DNA cleavage and regulates trans-DNA cleavage.
FEBS Lett. 2021 Apr;595(7):892-912. doi: 10.1002/1873-3468.14051. Epub 2021 Feb 28.
9
The Role of Protein Disorder in Nuclear Transport and in Its Subversion by Viruses.
Cells. 2020 Dec 10;9(12):2654. doi: 10.3390/cells9122654.
10
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis.
Prog Mol Biol Transl Sci. 2020;174:1-78. doi: 10.1016/bs.pmbts.2020.03.001. Epub 2020 Apr 2.

本文引用的文献

2
What is the time scale for α-helix nucleation?
J Am Chem Soc. 2011 May 4;133(17):6809-16. doi: 10.1021/ja200834s. Epub 2011 Apr 11.
4
Structural basis for cooperative RNA binding and export complex assembly by HIV Rev.
Nat Struct Mol Biol. 2010 Nov;17(11):1337-42. doi: 10.1038/nsmb.1902. Epub 2010 Oct 17.
5
HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12481-6. doi: 10.1073/pnas.1007022107. Epub 2010 Jun 28.
6
Improved side-chain torsion potentials for the Amber ff99SB protein force field.
Proteins. 2010 Jun;78(8):1950-8. doi: 10.1002/prot.22711.
7
Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5810-4. doi: 10.1073/pnas.0914946107. Epub 2010 Mar 15.
9
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验