Suppr超能文献

空间传播酶反应中的分子滴定超敏性。

Ultrasensitivity by molecular titration in spatially propagating enzymatic reactions.

机构信息

Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands.

出版信息

Biophys J. 2013 Aug 20;105(4):1057-66. doi: 10.1016/j.bpj.2013.07.002.

Abstract

Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales.

摘要

通过纯化组分的重构来描绘生物系统的设计原则,为评估关键物理化学参数对简化复杂程度的最小生物系统的影响提供了一个平台。在这里,我们揭示了强可逆抑制剂对体外受限环境中酶反应时空传播的影响。我们使用微图案化的、酶负载的琼脂糖凝胶,将其压印在含有固定化底物和可逆抑制剂的聚丙烯酰胺薄膜上。定量荧光成像结合反应-扩散过程的详细数值模拟表明,通过添加强抑制剂,酶的浅梯度可以转化为陡峭的产物梯度,这与分子滴定的数学模型一致。结果证实,在分子水平上的超高灵敏度和阈值效应可以将分级输入信号转换为宏观长度尺度上的陡峭空间响应。

相似文献

1
Ultrasensitivity by molecular titration in spatially propagating enzymatic reactions.
Biophys J. 2013 Aug 20;105(4):1057-66. doi: 10.1016/j.bpj.2013.07.002.
2
Threshold sensing through a synthetic enzymatic reaction-diffusion network.
Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8066-9. doi: 10.1002/anie.201402327. Epub 2014 Apr 2.
3
A microscopic model of enzyme kinetics.
Biophys J. 1995 Aug;69(2):356-61. doi: 10.1016/S0006-3495(95)79907-6.
5
Enzyme-Laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation.
Acc Chem Res. 2021 Mar 2;54(5):1274-1287. doi: 10.1021/acs.accounts.0c00832. Epub 2021 Feb 11.
6
Enzymatic reactions in confined environments.
Nat Nanotechnol. 2016 May 5;11(5):409-20. doi: 10.1038/nnano.2016.54.
8
Powering Motion with Enzymes.
Acc Chem Res. 2018 Oct 16;51(10):2373-2381. doi: 10.1021/acs.accounts.8b00286. Epub 2018 Sep 26.
9
Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems.
Int J Biol Macromol. 2018 Nov;119:453-461. doi: 10.1016/j.ijbiomac.2018.07.133. Epub 2018 Jul 21.

引用本文的文献

1
Chemical waves in reaction-diffusion networks of small organic molecules.
Chem Sci. 2024 Dec 9;16(2):659-669. doi: 10.1039/d4sc06351a. eCollection 2025 Jan 2.
2
Computing Arithmetic Functions Using Immobilised Enzymatic Reaction Networks.
Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202215759. doi: 10.1002/anie.202215759. Epub 2023 Jan 12.
3
Reaction-Diffusion Patterning of DNA-Based Artificial Cells.
J Am Chem Soc. 2022 Sep 28;144(38):17468-17476. doi: 10.1021/jacs.2c06140. Epub 2022 Sep 14.
4
Reverse and forward engineering of protein pattern formation.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0104.
5
Grip on complexity in chemical reaction networks.
Beilstein J Org Chem. 2017 Jul 28;13:1486-1497. doi: 10.3762/bjoc.13.147. eCollection 2017.
6
Free-standing supramolecular hydrogel objects by reaction-diffusion.
Nat Commun. 2017 Jul 5;8:15317. doi: 10.1038/ncomms15317.
7
The nanotechnology of life-inspired systems.
Nat Nanotechnol. 2016 Jul 6;11(7):585-92. doi: 10.1038/nnano.2016.116.

本文引用的文献

1
Bottom-up construction of in vitro switchable memories.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):E3212-20. doi: 10.1073/pnas.1212069109. Epub 2012 Oct 29.
2
Developmental pattern formation: insights from physics and biology.
Science. 2012 Oct 12;338(6104):210-2. doi: 10.1126/science.1225182.
3
Synthetic homeostatic materials with chemo-mechano-chemical self-regulation.
Nature. 2012 Jul 11;487(7406):214-8. doi: 10.1038/nature11223.
4
Synthetic in vitro circuits.
Curr Opin Chem Biol. 2012 Aug;16(3-4):253-9. doi: 10.1016/j.cbpa.2012.05.179. Epub 2012 Jun 5.
6
Non-transcriptional regulatory processes shape transcriptional network dynamics.
Nat Rev Microbiol. 2011 Oct 11;9(11):817-28. doi: 10.1038/nrmicro2667.
7
Synthetic mammalian gene networks as a blueprint for the design of interactive biohybrid materials.
Chem Soc Rev. 2012 Feb 7;41(3):1000-18. doi: 10.1039/c1cs15176b. Epub 2011 Sep 6.
8
Scaling of morphogen gradients.
Curr Opin Genet Dev. 2011 Dec;21(6):704-10. doi: 10.1016/j.gde.2011.07.011. Epub 2011 Aug 26.
9
MicroRNAs can generate thresholds in target gene expression.
Nat Genet. 2011 Aug 21;43(9):854-9. doi: 10.1038/ng.905.
10
Turing's next steps: the mechanochemical basis of morphogenesis.
Nat Rev Mol Cell Biol. 2011 Jun;12(6):392-8. doi: 10.1038/nrm3120.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验