Suppr超能文献

蛋白质模式形成的反向和正向工程。

Reverse and forward engineering of protein pattern formation.

机构信息

Department of Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany.

Department of Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany

出版信息

Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0104.

Abstract

Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'.

摘要

生命系统利用蛋白质图案形成来调节时空内的重要生命过程。尽管已经在各种原核生物和真核生物中鉴定出了形成图案的蛋白质网络,但由于活细胞的复杂环境,对其进行系统的实验表征具有挑战性。相反,无细胞系统非常适合实现这一目标,因为它们提供了可以精确控制和操作的明确分子环境。为了揭示蛋白质图案形成的分子基础,我们概述了两种互补的方法:重建网络的生化反向工程和人工自组织系统的从头设计或正向工程。我们首先通过 Min 系统的例子来说明反向工程方法,该系统是基于 ATP 酶 MinD 及其激活蛋白 MinE 与脂质膜之间可逆和能量依赖性相互作用的蛋白质自组织的模型系统。通过重建在 ATP 酶刺激中受损的 MinE 突变体,我们证明了 MinE 活性和浓度如何调节大规模 Min 蛋白质图案。然后,我们对自组织蛋白质网络的从头设计提供了一个视角。紧密集成的反向和正向工程方法将是理解和设计蛋白质图案形成这一迷人现象的关键。本文是“细胞生物学中的自组织”主题问题的一部分。

相似文献

1
Reverse and forward engineering of protein pattern formation.蛋白质模式形成的反向和正向工程。
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0104.
3

本文引用的文献

3
Brownian ratchet mechanisms of ParA-mediated partitioning.ParA介导的分配的布朗棘轮机制。
Plasmid. 2017 Jul;92:12-16. doi: 10.1016/j.plasmid.2017.05.002. Epub 2017 May 18.
7
Synthetic Biology-The Synthesis of Biology.合成生物学——生物学的合成。
Angew Chem Int Ed Engl. 2017 Jun 1;56(23):6396-6419. doi: 10.1002/anie.201609229. Epub 2017 Apr 25.
10
Protein Patterns and Oscillations on Lipid Monolayers and in Microdroplets.蛋白质在单层脂膜和微滴中的图案和震荡。
Angew Chem Int Ed Engl. 2016 Oct 17;55(43):13455-13459. doi: 10.1002/anie.201606069. Epub 2016 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验