Suppr超能文献

极端扩展下的神经功能保护。

Preserving neural function under extreme scaling.

机构信息

Department of Systems and Computational Neurobiology, Max Planck Institute of Neurobiology, Martinsried, Germany ; Institute of Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany ; Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt/Main, Germany.

出版信息

PLoS One. 2013 Aug 19;8(8):e71540. doi: 10.1371/journal.pone.0071540. eCollection 2013.

Abstract

Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.

摘要

重要的大脑功能需要在大小差异极大的生物体中得以保留。在这里,我们研究了大脑中一个基本计算组件的缩放特性:单个神经元。我们将一只黄粉蝶(Calliphora)中一种独一无二的可识别中间神经元(HS 细胞)的形态和信号传播与其在果蝇(Drosophila)中的对应物进行了比较,后者在每个维度上都要小四倍。HS 细胞的解剖特征按比例缩放并最小化布线成本,但仅凭自身并不能按比例缩放以保留电紧张行为。然而,膜特性被设定为保留树突和轴突的延迟和衰减以及视觉信息的树突整合。总之,神经元的电紧张结构,在这种情况下是 HS 细胞,在广泛的形态尺度上惊人地稳定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验