Suppr超能文献

使用贝叶斯潜在类别聚类模型对健康老龄化认知表现模式进行分类。

The use of bayesian latent class cluster models to classify patterns of cognitive performance in healthy ageing.

机构信息

Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.

出版信息

PLoS One. 2013 Aug 20;8(8):e71940. doi: 10.1371/journal.pone.0071940. eCollection 2013.

Abstract

The main focus of this study is to illustrate the applicability of latent class analysis in the assessment of cognitive performance profiles during ageing. Principal component analysis (PCA) was used to detect main cognitive dimensions (based on the neurocognitive test variables) and Bayesian latent class analysis (LCA) models (without constraints) were used to explore patterns of cognitive performance among community-dwelling older individuals. Gender, age and number of school years were explored as variables. Three cognitive dimensions were identified: general cognition (MMSE), memory (MEM) and executive (EXEC) function. Based on these, three latent classes of cognitive performance profiles (LC1 to LC3) were identified among the older adults. These classes corresponded to stronger to weaker performance patterns (LC1>LC2>LC3) across all dimensions; each latent class denoted the same hierarchy in the proportion of males, age and number of school years. Bayesian LCA provided a powerful tool to explore cognitive typologies among healthy cognitive agers.

摘要

本研究的主要重点是说明潜在类别分析在评估老年人认知表现特征中的适用性。主成分分析(PCA)用于检测主要认知维度(基于神经认知测试变量),贝叶斯潜在类别分析(LCA)模型(无约束)用于探索社区居住的老年人的认知表现模式。性别、年龄和受教育年限作为变量进行了探讨。确定了三个认知维度:一般认知(MMSE)、记忆(MEM)和执行(EXEC)功能。基于这些,在老年人中确定了三个认知表现特征的潜在类别(LC1 到 LC3)。这些类别对应于所有维度上更强到更弱的表现模式(LC1>LC2>LC3);每个潜在类别在男性、年龄和受教育年限的比例上表示相同的层次结构。贝叶斯 LCA 为探索健康认知老年人的认知类型学提供了有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验