Suppr超能文献

利用重排断点数据进行遗传图谱构建和基因组选择。

Genetic mapping and genomic selection using recombination breakpoint data.

机构信息

Department of Botany and Plant Sciences, University of California, Riverside, California 92521.

出版信息

Genetics. 2013 Nov;195(3):1103-15. doi: 10.1534/genetics.113.155309. Epub 2013 Aug 26.

Abstract

The correct models for quantitative trait locus mapping are the ones that simultaneously include all significant genetic effects. Such models are difficult to handle for high marker density. Improving statistical methods for high-dimensional data appears to have reached a plateau. Alternative approaches must be explored to break the bottleneck of genomic data analysis. The fact that all markers are located in a few chromosomes of the genome leads to linkage disequilibrium among markers. This suggests that dimension reduction can also be achieved through data manipulation. High-density markers are used to infer recombination breakpoints, which then facilitate construction of bins. The bins are treated as new synthetic markers. The number of bins is always a manageable number, on the order of a few thousand. Using the bin data of a recombinant inbred line population of rice, we demonstrated genetic mapping, using all bins in a simultaneous manner. To facilitate genomic selection, we developed a method to create user-defined (artificial) bins, in which breakpoints are allowed within bins. Using eight traits of rice, we showed that artificial bin data analysis often improves the predictability compared with natural bin data analysis. Of the eight traits, three showed high predictability, two had intermediate predictability, and two had low predictability. A binary trait with a known gene had predictability near perfect. Genetic mapping using bin data points to a new direction of genomic data analysis.

摘要

用于数量性状基因座作图的正确模型是同时包含所有重要遗传效应的模型。对于高密度标记来说,这种模型很难处理。提高高维数据的统计方法似乎已经达到了一个瓶颈。必须探索替代方法来突破基因组数据分析的瓶颈。事实上,所有标记都位于基因组的少数几条染色体上,导致标记之间存在连锁不平衡。这表明通过数据处理也可以实现降维。高密度标记用于推断重组断点,然后方便地构建 bin。这些 bin 被视为新的合成标记。bin 的数量始终是一个可管理的数量,大约几千个。我们使用水稻重组自交系群体的 bin 数据,演示了同时使用所有 bin 的遗传作图。为了促进基因组选择,我们开发了一种方法来创建用户定义的(人工) bin,允许在 bin 内设置断点。使用水稻的 8 个性状,我们表明人工 bin 数据分析通常比自然 bin 数据分析提高了可预测性。在这 8 个性状中,有 3 个表现出高度可预测性,2 个具有中等可预测性,2 个具有低可预测性。一个具有已知基因的二元性状具有近乎完美的可预测性。使用 bin 数据进行遗传作图为基因组数据分析指明了一个新的方向。

相似文献

5
Genome wide association mapping for grain shape traits in indica rice.籼稻粒形性状的全基因组关联图谱分析
Planta. 2016 Oct;244(4):819-30. doi: 10.1007/s00425-016-2548-9. Epub 2016 May 19.

引用本文的文献

10
Current status of genomic evaluation.基因组评估的现状。
J Anim Sci. 2020 Apr 1;98(4). doi: 10.1093/jas/skaa101.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验