Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Institute for Microbiology, University of Regensburg, Universitaetsstrasse 31D-93053 Regensburg, Germany.
Microbiology (Reading). 2013 Nov;159(Pt 11):2249-2258. doi: 10.1099/mic.0.069617-0. Epub 2013 Aug 29.
Motility driven by rotational movement of flagella allows bacteria and archaea to seek favourable conditions and escape toxic ones. However, archaeal flagella share structural similarities with bacterial type IV pili rather than bacterial flagella. The Haloferax volcanii genome contains two flagellin genes, flgA1 and flgA2. While FlgA1 has been shown to be a major flagellin, the function of FlgA2 is elusive. In this study, it was determined that although FlgA2 by itself does not confer motility to non-motile ΔflgA1 Hfx. volcanii, a subset of these mutant cells contains a flagellum. Consistent with FlgA2 being assembled into functional flagella, FlgA1 expressed from a plasmid can only complement a ΔflgA1 strain when co-expressed with chromosomal or plasmid-encoded FlgA2. Surprisingly, a mutant strain lacking FlgA2, but expressing chromosomally encoded FlgA1, is hypermotile, a phenotype that is accompanied by an increased number of flagella per cell, as well as an increased flagellum length. Site-directed mutagenesis resulting in early translational termination of flgA2 suggests that the hypermotility of the ΔflgA2 strain is not due to transcriptional regulation. This, and the fact that plasmid-encoded FlgA2 expression in a ΔflgA2 strain does not reduce its hypermotility, suggests a possible regulatory role for FlgA2 that depends on the relative abundance of FlgA1. Taken together, our results indicate that FlgA2 plays both structural and regulatory roles in Hfx. volcanii flagella-dependent motility. Future studies will build upon the data presented here to elucidate the significance of the hypermotility of this ΔflgA2 mutant, and will illuminate the regulation and function of archaeal flagella.
鞭毛的旋转运动驱动的运动性使细菌和古菌能够寻找有利条件并逃避有毒物质。然而,古菌鞭毛与细菌 IV 型菌毛而不是细菌鞭毛具有结构相似性。Haloferax volcanii 基因组包含两个鞭毛蛋白基因,flgA1 和 flgA2。虽然已经表明 FlgA1 是主要的鞭毛蛋白,但 FlgA2 的功能尚不清楚。在这项研究中,确定尽管 FlgA2 本身不能赋予非运动性的ΔflgA1 Hfx. volcanii 运动性,但这些突变细胞的一部分包含鞭毛。与 FlgA2 组装成功能性鞭毛一致,FlgA1 从质粒表达只能在与染色体或质粒编码的 FlgA2 共表达时才能补充ΔflgA1 菌株。令人惊讶的是,缺乏 FlgA2 但表达染色体编码的 FlgA1 的突变株是超运动性的,这种表型伴随着每个细胞的鞭毛数量增加,以及鞭毛长度增加。导致 flgA2 早期翻译终止的定点突变表明,ΔflgA2 菌株的超运动性不是由于转录调节。这一事实以及质粒编码的 FlgA2 在ΔflgA2 菌株中的表达不能降低其超运动性表明 FlgA2 可能具有依赖于 FlgA1 相对丰度的调节作用。总之,我们的结果表明 FlgA2 在 Hfx. volcanii 鞭毛依赖性运动中发挥结构和调节作用。未来的研究将基于这里提出的数据阐明该ΔflgA2 突变体超运动性的意义,并阐明古菌鞭毛的调节和功能。